theorem anroti (a b c d: wff): $ a -> b /\ d $ > $ a /\ c -> b /\ c /\ d $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anrass | b /\ d /\ c <-> b /\ c /\ d |
|
2 | anim1 | (a -> b /\ d) -> a /\ c -> b /\ d /\ c |
|
3 | hyp h | a -> b /\ d |
|
4 | 2, 3 | ax_mp | a /\ c -> b /\ d /\ c |
5 | 1, 4 | sylib | a /\ c -> b /\ c /\ d |