Theorem allS | index | src |

theorem allS (A: set) (a b: nat): $ all A (a : b) <-> a e. A /\ all A b $;
StepHypRefExpression
1 bitr
(all A (a : b) <-> a ; lmems b C_ A) -> (a ; lmems b C_ A <-> a e. A /\ all A b) -> (all A (a : b) <-> a e. A /\ all A b)
2 sseq1
lmems (a : b) == a ; lmems b -> (lmems (a : b) C_ A <-> a ; lmems b C_ A)
3 2 conv all
lmems (a : b) == a ; lmems b -> (all A (a : b) <-> a ; lmems b C_ A)
4 nseq
lmems (a : b) = a ; lmems b -> lmems (a : b) == a ; lmems b
5 lmemsS
lmems (a : b) = a ; lmems b
6 4, 5 ax_mp
lmems (a : b) == a ; lmems b
7 3, 6 ax_mp
all A (a : b) <-> a ; lmems b C_ A
8 1, 7 ax_mp
(a ; lmems b C_ A <-> a e. A /\ all A b) -> (all A (a : b) <-> a e. A /\ all A b)
9 insss
a ; lmems b C_ A <-> a e. A /\ lmems b C_ A
10 9 conv all
a ; lmems b C_ A <-> a e. A /\ all A b
11 8, 10 ax_mp
all A (a : b) <-> a e. A /\ all A b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)