Theorem addb00 | index | src |

theorem addb00 (a b: nat): $ b0 a + b0 b = b0 (a + b) $;
StepHypRefExpression
1 add4
a + a + (b + b) = a + b + (a + b)
2 1 conv b0
b0 a + b0 b = b0 (a + b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, add0, addS)