Theorem Ifeq3d | index | src |

theorem Ifeq3d (_G p: wff) (A _B1 _B2: set):
  $ _G -> _B1 == _B2 $ >
  $ _G -> If p A _B1 == If p A _B2 $;
StepHypRefExpression
1 biidd
_G -> (p <-> p)
2 eqsidd
_G -> A == A
3 hyp _h
_G -> _B1 == _B2
4 1, 2, 3 Ifeqd
_G -> If p A _B1 == If p A _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)