theorem Ifeq3d (_G p: wff) (A _B1 _B2: set): $ _G -> _B1 == _B2 $ > $ _G -> If p A _B1 == If p A _B2 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | _G -> (p <-> p) |
|
| 2 | eqsidd | _G -> A == A |
|
| 3 | hyp _h | _G -> _B1 == _B2 |
|
| 4 | 1, 2, 3 | Ifeqd | _G -> If p A _B1 == If p A _B2 |