theorem Ifeq2d (_G p: wff) (_A1 _A2 B: set): $ _G -> _A1 == _A2 $ > $ _G -> If p _A1 B == If p _A2 B $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | _G -> (p <-> p) |
|
2 | hyp _h | _G -> _A1 == _A2 |
|
3 | eqsidd | _G -> B == B |
|
4 | 1, 2, 3 | Ifeqd | _G -> If p _A1 B == If p _A2 B |