
Metamath Zero
From Logic, to Proof Assistant, to Verified Compilation

Mario Carneiro

Abstract

As the usage of theorem prover technology expands, so too does
the reliance on correctness of the tools. Metamath Zero is a verifica-
tion system that aims for simplicity of logic and implementation, as
well as efficiency of verification. It is formally specified in its own lan-
guage, and supports a number of translations to and from other proof
languages. This dissertation describes the abstract logic of Metamath
Zero, essentially a multi-sorted first order logic, as well as the binary
proof format and the way in which it can ensure essentially linear time
verification while still being concise and efficient at scale.

In addition, we use the logic as the foundation for a proof assistant
called Metamath One, and use it to write a modest library of theorems;
this library is then used to build a proof-producing compiler, the Meta-
math C compiler, which allows writing programs at a high level in a
type system strong enough to state and prove functional correctness
properties, and lowers the proofs all the way down to machine code
and a specification of the hardware.

Ultimately, we intend to use Metamath C to implement a verifier for
Metamath Zero which is implementation-correct down to the binary
executable, so it can be used as a root of trust for more complex proof
systems.

Contents

0.1 How to trust a proof checker 11

0.2 Bootstrap an existing proof language? 13

1 Metamath Zero: The Logic 17

1.1 Metamath 17

1.2 Shortcomings of Metamath 18

1.2.1 Bundling 19

1.2.2 Strings vs trees 19

1.2.3 Definitions 20

1.3 MM0 primer 21

1.4 The MM0 formal system 23

1.4.1 Sorts 23

1.4.2 Variables 23

1.4.3 Abstract syntax 24

1.4.4 Well-formedness 26

1.4.5 The MM0 proof judgment 29

1.4.6 The MM0 convertibility judgment 31

1.5 The .mm0 specification format 33

1.5.1 Sort modifiers 33

1.5.2 No proofs 33

1.5.3 Abstract definitions 34

1.5.4 Local theorems and definitions 34

1.5.5 Notation 35

6

1.6 The .mmb binary proof file 36

1.7 High level structure 37

1.8 The declaration list 37

1.9 Compilation 41

2 Metamath One 45

2.1 MM1 syntax 47

2.1.1 Tactics 49

2.1.2 MM1 tooling features 51

2.2 Proof developments using MM1 52

2.2.1 The peano.mm1 metaprogramming library 52

2.2.2 peano.mm1: Peano arithmetic 53

2.2.3 peano_hex.mm1: Hexadecimal arithmetic 57

2.2.4 mm0.mm1: A formal specification of MM0 59

2.2.5 x86.mm1: A formal specification of the Intel x86 ISA 61

2.2.6 x86_determ.mm1: Determinism of the decode function 63

2.2.7 separation_logic.mm1: Separation logic 65

2.2.8 assembler-{old,new}.mm1: Assembler theorems (WIP) 66

2.2.9 compiler-{old,new}.mm1: Compiler theorems (WIP) 66

2.2.10 verifier.mm1: The bootstrap theorem 66

3 Metamath C 67

3.1 On verified programming 68

3.2 A tour of Metamath C 72

3.2.1 Procedures 72

3.2.2 Functions 73

3.2.3 Variables 73

3.2.4 Tuples and destructuring 74

7

3.2.5 Control flow 75

3.2.6 Termination 76

3.2.7 Integral types and operations 77

3.2.8 Failure is always an option 79

3.2.9 Ghost variables 80

3.2.10 Casting, type punning, and truncation 81

3.2.11 The empty type 82

3.2.12 Separation logic types 84

3.2.13 Pointers and arrays 86

3.2.14 Mutable parameters 88

3.2.15 Global variables and constants 89

3.2.16 Type definitions 90

3.3 Modeling MMC 90

3.3.1 Hoare logic primer 90

3.3.2 Separation logic 92

3.3.3 The type context 93

3.3.4 Toward a compositional program logic 95

4 The Metamath C Compiler 99

4.1 MIR in depth 103

4.2 How proof generation works 106

4.3 The assembly proof 107

4.3.1 Global assembly 107

4.3.2 Local assembly 109

4.3.3 Assembling instructions 110

4.4 The correctness proof 113

4.4.1 The type context 113

4.4.2 Block structure 115

8

4.5 Executing statements 117

4.6 Label groups and proof by induction 118

4.7 Tying it all together 120

4.8 Meta-analysis of the proof 122

4.8.1 Infinite sets in PA 122

4.8.2 Syntactic strings 123

5 Looking ahead 125

5.1 Applications 125

5.1.1 MM0 as an interchange format 125

5.2 Translating MM to MM0 126

5.3 Translating MM0 to HOL systems 126

5.4 Related work 127

5.4.1 Bootstrapping theorem provers 127

5.4.2 Code extraction 129

5.4.3 ISA specification 129

5.4.4 Program verification 129

5.4.5 Verified compilers 129

5.4.6 Verification frameworks 130

5.4.7 Type soundness theorems 130

5.5 Conclusion 130

A A contradiction in Metamath from grammar ambiguity 133

B The type system of MMC 134

B.1 Syntax 134

B.2 Typing 137

9

B.2.1 Overview 137

B.2.2 Moving types 139

B.2.3 The Typing Rules 140

B.2.4 Expression typing 142

B.2.5 No-op steps 145

B.2.6 Top level typing 146

B.2.7 Uninitialized data 147

B.2.8 Pointers 147

B.2.9 Arrays 152

B.3 Ghost propagation 152

B.3.1 Ghost annotated types and tuple patterns 153

B.3.2 The expression typing judgment 154

B.3.3 Side effects 158

B.4 Optimization and legalization 158

B.5 Semantics 158

B.5.1 Interpreting the context 159

Bibliography 161

Introduction

This thesis is about the intersection of two fields, mathemat-
ics and computer science, right at the foundations. By pursuing an
optimal solution to the problem of trusted computation, with minimal
detours for half-measures, we get an architecture that is small (small
enough to be understood end-to-end), efficient (competitive with the
fastest verifiers in use today), and with every component subject to
rigorous evaluation and proof.1 The architecture, called Metamath
Zero (MM0), is not uniquely defined by these features, and indeed I
would like there to be more systems out there like it to explore the
design space. But hopefully it can at least be used to set the baseline
(or rather, a high standard) for what we can expect from a verification
system in the limit.

A verification system is a computer program which validates the cor-
rectness of mathematical derivations. In other words, a proof-checker.
Verification systems often come bundled together with a proof assistant
or interactive theorem prover (ITP), which is a program to assist in the
construction of derivations that can be verified by the system. In gen-
eral, it is much harder to construct a good proof assistant than a good
verification system, because as the name suggests, an ITP has to inter-
act with the user, who is guiding the computer towards the proof, and
an unbounded amount of work can be poured into the proof assistant
to help it find proofs better or make the system easier to use. By con-
trast, a verification system has a rigidly defined input and output, and
interacts minimally with the human operator, which makes it a much
simpler object of study.

0.1 How to trust a proof checker

The basic idea behind using a computer to check proofs is that they can
do so faster and with fewer errors than a human. This, in turn, means
that they can be put to use to check proofs that would be infeasible for
a human to check. The first major example of this was the proof of the

1 Of course, there are caveats to any
statement, and we will get to them.
In particular, Gödel’s incompleteness
theorem is often used to argue that a
bootstrapping system like the one I
will describe is a pointless endeavor,
but I will argue that the limitation
is of a technical nature, and with a
suitably modified statement we can still
construct something morally equivalent
to a self-proving system.

12

four-color theorem by Appel and Haken in 1976, which has been sim-
plified since but still involves an enumeration of 633 configurations.
But we should consider how, exactly, we can come to believe that a
proof containing a computer component in fact validates the theorem
in question.

Let us consider a dialog between two humans Penny the Prover
and Victor the Verifier. Penny has discovered a marvelous proof of
a theorem T, and wishes to convince Victor that T is true. Victor is
interested in T and cautiously optimistic about this news of Penny’s,
but would like to see for themself that T is true. Unfortunately, T has
a long and complicated proof, and Penny realizes that Victor may get
confused while reading it and start to doubt their own faculties, or
give up altogether upon seeing the length of the proof.

At this point we will make another simplifying assumption, which
is that Victor’s time is much more valuable than Penny’s, so Penny
is willing to put in lots of extra work to make Victor’s job as easy as
possible.2 If the proof, like Appel and Haken’s, requires an enumer-
ation of thousands or millions of cases, then Penny is almost forced
to involve a computer in the proof, because it can go through all the
cases tirelessly, while a human would not have a chance of making it
through all the cases before dropping to sociological estimates of cor-
rectness like “Penny is conscientious and trustworthy so probably the
next 100 cases are okay.”

We need a computer in the loop then, but what does that entail? En-
ter Robo-Victor. Robo-Victor is just like Victor, except it’s a computer.
It can read the million case proof much quicker than Victor, and since
Penny knew that Robo-Victor was coming they prepared a proof in a
format that Robo-Victor could read. But Victor is still not convinced,
because they’re not Robo-Victor, so we have not yet accomplished our
goal. Penny now needs to convince Victor that Robo-Victor is a care-
ful reader, and that they aren’t partners in a confidence game to fool
Victor.

The assertion that Robo-Victor is a careful reader (that is, that it
doesn’t validate bad proofs) is also a mathematical assertion, so Penny
could try to use the same method to convince Victor of this fact. But
Victor is a busy person, they don’t have time for infinite regresses. Of
course, the original method is still on the table: Penny can write a
paper proof and give it to Victor who reads it and is convinced. It
was only the size of the original proof that lead to the investigation of
alternative methods, and we have reduced the problem to an assertion
about Robo-Victor, which no longer involves the million-case proof.
As long as it is easy for Victor to verify that Robo-Victor does what it
was designed to do we can run it on the big proof, wait for the green

2 This is not an entirely unreasonable
assumption. Perhaps Penny is an early-
career researcher while Victor is a busy
professor. Most proofs are also read
many more times than they are written,
so it makes sense to optimize for the
reader. Realistically, there are limits on
the effort that Penny can put into the
proof, and we will get back to this later.

13

light and then Victor will also be convinced.

We can do a bit better though: A formal proof of correctness of
Robo-Victor (checked by Robo-Victor itself) is not really convincing
on its own, any more than a suspect asserting their truthfulness, but
the combination of the two methods is better than either one individ-
ually. Victor can read Robo-Victor’s code to ensure it works as ex-
pected, then if Robo-Victor reads the code as well and agrees, Victor is
reassured. Because Victor and Robo-Victor have completely different
failure modes, Victor can be more confident with Robo-Victor’s help,
even though Robo-Victor is the suspect.

Of course, this is not even taking into account those sociological
measures of correctness, which certainly apply to Robo-Victor. All the
common proof assistants today rely on this mechanism. Coq, Isabelle,
Lean are trustworthy because lots of people use them, they are main-
tained by teams of smart people, no one has proved false in them for a
while, etc. Proofs in the real world are often a combination of factors
like this.

We can extract a plan of action from this little allegory. Notice that
the criteria going into the design of Robo-Victor do not really depend
on the original million-case proof that motivated Penny. As long as
Robo-Victor is fast enough, it is worthwhile to deploy on any large-
enough proof.3 Our goal is to solve the meta-problem, to make Victor’s
job as easy as possible, abstracted over possible target theorems and
proofs. The main criteria are:

• Victor needs to read Robo-Victor’s code, so it should be short, clear,
and well documented.

• Victor needs to run (or observe the run of) Robo-Victor and see that
it is satisfied with the proof (both the original million-case proof as
well as Robo-Victor’s correctness proof), so Robo-Victor should be
fast.4

• Victor needs to verify that Robo-Victor is in fact verifying Penny’s
proof, so the statement of the theorem should be expressed in either
the output or the input in a clear and readable way, which can’t be
confused with a different theorem.5

• Penny wants the provability assertions coming from Robo-Victor to
be relevant to the original proof, so Robo-Victor should be able to
validate theorems in Penny’s proof system.6

0.2 Bootstrap an existing proof language?

The goal to have a self-verifying system with low dependencies puts
certain constraints on the design of the language, and outright ex-

3 For very large proofs, one might need
a Super-Victor that is more complex
and more efficient than Robo-Victor.
Luckily, Robo-Victor can also help
Victor to believe that Super-Victor
works as designed.

4 The speed requirements are not
extreme, because we can bootstrap
faster versions if necessary, but we
are lower bounded by the time that
Robo-Victor takes to verify either its
own code (for the bootstrap path) or the
original proof (for the direct path).
5 A surprisingly large number of proof
assistants fail this test, which is also
known as “Pollack-consistency” after:

Freek Wiedijk. Pollack-inconsistency.
Electronic Notes in Theoretical Computer
Science, 285:85–100, 2012

6 This is a tricky one, because we don’t
know what Penny wants to prove.
However, we can get around this by
using a “universal” formal system
which can model other formal systems.
As it happens, just about every practical
formal system already meets this
criterion.

14

cludes the majority of proof languages in common use.

• Coq, Lean, and Isabelle, while having a strong tradition of program
verification, sacrifice simplicity of the logical kernel for this, which
makes the task of writing a verifier nontrivial and a verified verifier
nearly impossible.

• HOL4 cannot be written off because the CakeML7 system proves
that a verified verifier is within reach, but it is still very complex and
pays for this with a very expensive bootstrap. (It also isn’t actually
self-verifying, but rather HOL Light verifying at the moment.)

• HOL Light is a promising candidate because of its simple kernel,
and the logical core has been verified in HOL Light. There is still a
fair amount of interpretation required to close this bootstrap, since
HOL Light relies on the OCaml type system for soundness and this
is not checked. As mentioned, there is also a verification of HOL
light in HOL4 that goes all the way to the binary, so if HOL light
can be used to verify HOL4 code then this could also be a way to
close the bootstrap.

• Metamath is also a simple kernel system, but it has no program
verification support and no direct support even for programmabil-
ity, relying on external programs to produce proofs.

The Metamath Zero system consists of three separate components to
address our constraints.

• Metamath Zero (MM0), the logic, is very closely related to Meta-
math and retains its simple kernel, adding the minimum features
required to allow for trusted specifications of large scale develop-
ments.

• Metamath One (MM1), the proof assistant, addresses the problems
with Metamath’s lack of programmability by layering a tactic lan-
guage on top of a live user interface modeled after Lean. This makes
it easy to write proofs that meet MM0’s stringent requirements while
keeping these features out of the kernel.

• Metamath C (MMC), the programming language, is a language for
writing programs that are intended for formal verification. It is sim-
ilar to languages like Dafny or Why3, but with C/Rust-like seman-
tics with native support for refinement types and ghost variables.
The MMC compiler will read programs in this language and pro-
duce MM0 proof objects asserting the correctness of a block of bytes
representing a binary executable.

They relate to the allegory of Penny and Victor in the following way:

• Penny is a mathematician or proof engineer who uses MM1 to write
MM0 proofs;

7 Ramana Kumar, Magnus O. Myreen,
Michael Norrish, and Scott Owens.
Cakeml: A verified implementation
of ml. SIGPLAN Not., 49(1):179–191,
January 2014

15

• Victor is an outsider or proof auditor who would like to know that
MM0 proofs actually establish a target claim;

• Robo-Victor is the MM0 verifier;

• I am “Meta-Penny,” playing the role of Penny as regards the one-
step-removed goal to prove the correctness of Robo-Victor, and MMC

is a tool in that proof.

The next few chapters roughly follow the structure of these compo-
nents:

• Chapter 1 describes MM0, starting from some examples, to the for-
mal logic, and then to the low level implementation of the kernel
and some of its characteristics.

• Chapter 2 describes MM1, with some examples and an overview
of the features, some examples on how to use the language, and
then shows the actual library of mathematical theorems developed
in MM1 in service of the other parts of the project.

• Chapter 3 describes MMC, going through some examples and then
showing all the interacting constructs that make it a useful verified
programming language.

• Chapter 4 describes the MMC compiler, treating Chapter 3 as the
problem statement and explaining how the compiler can take that
whole language and reduce everything down to formal proofs in
Peano arithmetic.

• Chapter 5 discusses some of the things that we can do with these
languages, including some current projects as well as future direc-
tions.

1

Metamath Zero: The Logic

At the core of a verification system is a logic that can be checked me-
chanically. We require a language that has a simple metatheory, is fast
to execute, scales at least to program correctness proofs, is automation-
friendly, and clearly expresses result theorems and specifications such
that the result can be audited by humans.

1.1 Metamath

Note: Readers uninterested in Metamath and the way MM0 relates to it can
safely skip to section 1.3 without loss of context.

As its name suggests, Metamath Zero is based on Metamath,1 a for-
mal system developed by Norman Megill in 1990. Its largest database,
set.mm, is the home of over 30000 proofs in ZFC set theory. In the
space of theorem prover languages, it is one of the simplest, by design.

The name “Metamath” comes from “metavariable mathematics,”
because the core concept is the pervasive use of metavariables over
an object logic. An example theorem statement in Metamath is

⊢ (∀x (φ→ ψ)→ (∀x φ→ ∀x ψ))

which has three “free metavariables:” x, φ, and ψ. φ and ψ range over
formulas of the object logic (let us say first order logic formulas like
∀v0 v0 = v1), and x ranges over variables of the object logic (that is, x
can be v0, v1, . . .).

However, this object logic never appears in actual usage. Rather, a
theorem is proved with these metavariables, and then it is later applied
with the metavariables (simultaneously) substituted for expressions
that will contain more metavariables. For example one could apply the
above theorem with the substitution {x 7→ y, φ 7→ ∀y φ, ψ 7→ x = y}

1 Norman Megill and David A. Wheeler.
Metamath: A Computer Language for
Mathematical Proofs. Lulu Press, 2019

18 metamath zero: from logic, to proof assistant, to verified compiler

to get:

⊢ (∀y (∀y φ→ x = y)→ (∀y ∀y φ→ ∀y x = y))

which again contains metavariables (in this case x, y, φ) that can be
further substituted later.

One consequence of the fact that variables like x are themselves
“variables ranging over variables” is that in a statement like ∀x x = y,
the variable y may or may not be bound by the ∀x quantifier, because
x and y may be the same variable. In order to express that two vari-
ables are different, the language includes “disjoint variable provisos”
A # B, which may be used as preconditions in theorems and assert that
variables A and B may not be substituted for expressions containing
a common variable. This is usually seen in the special cases x # y, as-
serting that x and y are not the same variable, and x # φ, asserting that
the substitution to φ does not contain the variable that x is substituted
to.

When a theorem is applied, a substitution σ of all the variables
is provided, and for each pair of variables A # B, it is checked that
for every pair of variables v ∈ σ(A), w ∈ σ(B), the disjoint variable
condition v # w is in the context. (This is why the relation is termed
a “disjoint variable condition”: if A # B then the set of variables in
substitutions to A and B must be disjoint.)

This is essentially the whole algorithm. There is no built in notion
of free and bound variable, proper substitution, or alpha renaming —
these can all be defined in the logic itself. It turns out that this is not
only straightforward to implement (which explains why there are 17

known Metamath verifiers written in almost as many languages), but
the fundamental operation, substitution, is effectively string interpola-
tion in the sense of printf, which can be done very efficiently on mod-
ern computers. As a result, Metamath boasts some of the fastest check-
ing times of any theorem prover library; the reference implementation,
metamath.exe, can check the set.mm database of ZFC mathematics in
about 8 seconds, and the fastest checker, smm, has performed the same
feat in 0.7 seconds (on a 2-core Intel i5 1.6GHz). (This is a reported
number from an older machine on an older and smaller set.mm. We
reran smm single threaded on a Intel i7 3.9 GHz and the latest version
of set.mm, and obtained 927± 28 ms.)

1.2 Shortcomings of Metamath

The primary differences between Metamath and Metamath Zero lie in
the handling of first order variables (“variables over variables” from
the previous section), expression parsing, and definitions, so some at-

metamath zero: the logic 19

tention is merited to the way these are handled. In each case, Meta-
math chooses the simplest course of action, possibly at the cost of not
making a statement as strong as one would like.

1.2.1 Bundling

As has been mentioned already, variables can alias, which leads to a
phenomenon known as “bundling” in which a theorem might mean
many different things depending on how the variables are substituted.
For example, ⊢ ∃x x = y is an axiom in set.mm with no disjointness
assumptions on x and y. There are essentially two different kinds of
object language assertions encoded here. If i ̸= j, then ⊢ ∃vi vi = vj

asserts that there exists an element equal to vj, and when the indices
are the same, ⊢ ∃vi vi = vi asserts that there exists an element that is
equal to itself. As it happens, in FOL both of these statements are true,
so we are comfortable asserting this axiom.

Nevertheless, there is no easy way to render this as a single theorem
of FOL, except by taking the conjunction of the two statements, and
this generalizes to more variables – a bundled theorem containing n
variables with no disjointness condition is equivalent (in the intended
semantics) to Bn shadow copies of that theorem in FOL, where Bn is
the nth Bell number, counting the number of ways that n elements can
be partitioned into groups, depending on whether they are mapped to
the same or different variables. The Bell numbers grow exponentially,
Bn = eO(n ln n), so this is at least a theoretical problem.

From the point of view of the Metamath user, this is not actually
a problem – this says that Metamath in theory achieves exponential
compression over more traditional variable handling methods, in which
variables with different names are always distinct. However, it is a
barrier to translations out of Metamath, because of the resulting expo-
nential explosion.

However, this is not a problem in practice, because the theoretically
predicted intricately bundled theorems aren’t written. Usually all or
almost all first order variables will be distinct from each other, in which
case there is exactly one corresponding FOL theorem (up to alpha re-
naming). In order to ease translations, MM0 requires that all first order
variables be distinct, and shoulders the burden of unbundling in the
translation from Metamath to MM0 (see section 5.1.1).

1.2.2 Strings vs trees

Metamath uses strings of tokens in order to represent expressions.
That is, the theorem ⊢ (φ → φ) is talking about the provability of

20 metamath zero: from logic, to proof assistant, to verified compiler

the expression consisting of five tokens [(, ph, ->, ph,)], with the initial
constant |- distinguishing this judgment from other judgments (for
example ⊢ φ asserts that φ is provable, while wff φ asserts that φ is a
well formed formula (wff)). The upshot of this is that parsing is trivial;
spaces between tokens are mandatory so it is often as simple as tokens
= mm_file.split(" "). This makes correctness of the verifier simpler
because the Metamath specification lines up closely with the internal
data representation.

However, this leads to a problem when interpreting expressions as
formulas of FOL. The axioms that define the wff φ judgment can be
interpreted as clauses of a context-free grammar, and when that gram-
mar is unambiguous there is a one-to-one relationship between strings
and their parse trees, which are identified with the proofs of wff φ

judgments 2. So in effect, parsing is not required because the parses are
provided with the proof. But unambiguity of a context-free grammar,
though true for set.mm 3, is undecidable in general, yet is soundness
critical — if parentheses were omitted in the definition of wff φ → ψ

(that is, if the formation rule for wffs included the clause “if the strings
u and v are wffs then u, ‘→’, v is a wff”), there would be two parses
of ⊥ → ⊥ → ⊥, and by conflating them it is not difficult to prove a
contradiction.4

Metamath Zero uses trees (or more accurately dags, directed acyclic
graphs) to represent expressions, which has some other side benefits
for the proof format (see section 1.6). This on its own is enough to
prevent ambiguity from leading to unsoundness. However, this means
that an MM0 verifier requires a dynamic parser for its operation, which
we will discuss in more detail in section 1.5.

1.2.3 Definitions

In Metamath, a definition is no more or less than an axiom. Generally
a new definition begins with an axiom defining a new syntax con-
structor, for example wff ∃!x φ, and an axiom that uses the ↔ symbol
to relate this syntax constructor with its “definition,” for example

y # x, y # φ ⊢ ∃!x φ↔ ∃y ∀x (φ↔ x = y).

Once again, the correctness of these definitional axioms is sound-
ness critical but not checked by the verifier. Definitions such as the
above definition of ∃! are conservative and eliminable (this is a metathe-
orem that can be proved outside Metamath), and by convention almost
all definitions in set.mm have a syntactic form like this, that is, a new
constructor P(x̄) is introduced together with an axiom yi # xj, yi # yj ⊢
P(x̄) ↔ φ(x̄, ȳ), where the additional variables ȳ (disjoint from x̄ and

2 Mario Carneiro. Models for Metamath.
presented at CICM 2016, 2016

3 Mario Carneiro. Grammar ambiguity
in set.mm. 2013

4 Appendix A contains an example
of a contradiction stemming from an
ambiguous grammar.

metamath zero: the logic 21

each other) are all bound in the FOL sense.

This convention is sufficiently precise that there is a tool that checks
these criteria, but this goes beyond the official Metamath specification,
and only one of the 17 verifiers (the mmj2 verifier) supports this check.
This effectively means that MM verification in practice extends beyond
the narrow definition of MM verification laid out in the standard.

Metamath Zero bakes in a concept of definition, which necessitates
a simple convertibility judgment. It also requires an identification of
variables that are “bound in the FOL sense,” which means that it can-
not completely ignore the notion of free and bound variables, at least
when checking definitions.

1.3 MM0 primer

Before we get to the formal definition, it will help to have some simple
examples of .mm0 files to get a sense for the language. Figure 1.1 shows
a MM0 file which declares the basics of propositional logic.

delimiter $ (∼ $ $) $;

strict provable sort wff;

term im (a b: wff): wff; infixr im: $->$ prec 25;

term not (a: wff): wff; prefix not: $∼$ prec 40;

-- The Lukasiewicz axioms for propositional logic

axiom ax_1 (a b: wff): $ a -> b -> a $;

axiom ax_2 (a b c: wff):

$ (a -> b -> c) -> (a -> b) -> a -> c $;

axiom ax_3 (a b: wff):

$ (∼a -> ∼b) -> b -> a $;

axiom ax_mp (a b: wff):

$ a -> b $ >

$ a $ >

$ b $;

-- Assert that ‘P -> P‘ is provable

theorem id (P: wff): $ P -> P $;

Figure 1.1: An example file prop.mm0,
which defines propositional calculus
and asserts that a→ a is provable from
these axioms.

All mathematical text is enclosed in $ characters. The delimiter

keyword sets up the lexer to allow no space following a ‘(’ or ‘∼’
character and before a ‘)’; spaces are otherwise required to separate
tokens inside a math string.

The declaration strict provable sort wff; creates a new sort named
wff, which can be used as the type of axioms and theorems (provable)
and which does not admit binding variables (strict).

The next two lines declare two term constructors called im and not,

22 metamath zero: from logic, to proof assistant, to verified compiler

along with notations ‘a -> b’ and ‘∼a’ to denote them.5

The next group of lines declares several axioms. This consists of
a sequence of binders like (a b: wff) which declare that a and b are
schematic variables ranging over sort wff, and this is followed by the
expression which is asserted, like ‘a -> b -> a’. In the case of the
ax_mp axiom (modus ponens), because this is an inference rule we have
two hypotheses ‘a -> b’ and ‘a’ from which we derive ‘b’. These are
separated from the conclusion by a short arrow ‘>’ (outside the math
quotations).

The final line is a theorem, which has exactly the same syntax as
axiom. A MM0 file will generally contain some axioms and then some
theorems, and the meaning of the specification is that the theorems fol-
low from the axioms. Crucially, since .mm0 is a specification file format,
it does not contain proofs for the theorems that are asserted. These
are provided separately, and the job of a MM0 verifier is to use the
proof file to validate the .mm0 specification file. This is a separation of
concerns, so that the .mm0 file contains only those things that must be
validated by a human while the proof file can focus on being good for
computer validation.

Two other features of MM0 that will be important later which are not
represented in this example are definitions and first order (binding)
variables. To demonstrate this, we extend Figure 1.1 to encompass
predicate calculus as well in Figure 1.2.

-- Predicate logic (on nat)

sort nat;

term al {x: nat} (P: wff x): wff; prefix al: $A.$ prec 41;

def ex {x: nat} (P: wff x): wff = $ ∼(A. x ∼P) $;

prefix ex: $E.$ prec 41;

term eq (a b: nat): wff; infixl eq: $=$ prec 50;

axiom ax_gen {x: nat} (P: wff x): $ P $ > $ A. x P $;

axiom ax_4 {x: nat} (P Q: wff x):

$ A. x (P -> Q) -> A. x P -> A. x Q $;

axiom ax_5 {x: nat} (p: wff): $ p -> A. x p $;

axiom ax_6 (a: nat) {x: nat}: $ E. x x = a $;

axiom ax_7 (a b c: nat): $ a = b -> a = c -> b = c $;

axiom ax_11 {x y: nat} (P: wff x y):

$ A. x A. y P -> A. y A. x P $;

Figure 1.2: Extension of Figure 1.1 to
include first order logic operators and a
selection of axioms about them.

We introduce another sort nat, but this time it is neither provable

(because only propositions can be proven, not terms) nor strict (be-
cause we will be making use of binding variables of sort nat).

5 Note that unlike Metamath, we do not
need to include parentheses in this def-
inition, because the mathematics parser
explicitly includes a precedence system.
We declared im as right associative
using the infixr keyword.

metamath zero: the logic 23

Binders using braces like {x: wff} denote first order or binding vari-
ables. The declaration term al {x: nat} (P: wff x): wff; says that al
takes a name x and an expression P(x) with possibly free occurrences
of x of sort wff, and binds those occurrences to produce another ex-
pression of sort wff. The x appearing in (P: wff x) says that P can
depend on x here.

In axioms, we use similar binders to express constraints on the legal
substitution instances of the axioms. For example ax_gen can be used
with the substitution {x 7→ y, P 7→ y = z} to assert that if ⊢ y = z is
derivable then so is ⊢ ∀y y = z. On the contrary, in ax_5, which has
binders {x: wff} (p: wff), because there is no x in the binder for p,
we are not permitted to use the substitution {x 7→ y, p 7→ y = z} like
before, because p must not contain a free occurrence of x.

1.4 The MM0 formal system

MM0 is intended to act as a schematic metatheory over multi-sorted
first order logic. This means that it contains sorts, two kinds of vari-
ables, expressions constructed from term constructors and definitions, and
axioms and theorems using expressions for their hypotheses and con-
clusion. Theorems have proofs, which involve applications of other
theorems and axioms.

1.4.1 Sorts

An MM0 file declares a (finite) collection of sorts, as given by sort dec-
larations. Every expression has a unique sort, and an expression can
only be substituted for a variable of the same sort. There are no type
constructors or function types, so the type system is finite. (Higher
order functions are mimicked using open terms, see section 1.4.2.) We
use s to denote sorts in the grammar.

1.4.2 Variables

MM0 distinguishes between two different kinds of variables. One may
variously be called names, first order variables or bound/binding vari-
ables. They will be denoted in this chapter with letters x, y, z, They
are essentially names that may be bound by quantifiers internal to the
logic. “Substitution” of names is α-conversion; expressions cannot be
substituted directly for names, although axioms may be used to im-
plement this action indirectly.

The other kind of variable may be called a (schematic) metavariable
or second order variable, and these may not be bound by quantifiers;

24 metamath zero: from logic, to proof assistant, to verified compiler

they are always implicitly universally quantified and held fixed within
a single theorem, but unlike names, they may be directly substituted
for an expression. We use φ, ψ, χ, . . . to denote schematic metavari-
ables in the grammar.

In FOL, the notation φ(x̄) is used to indicate that a metavariable is
permitted to depend on the variables x̄, and sometimes but not always
additional “parameter” variables not under consideration. In MM0,
we use a binder φ : s x, where s is the sort and x are the dependencies
of φ, to indicate that φ represents an open term that may reference
the variables x declared in the context. This is opposite the Metamath
convention which requires mentioning all pairs of variables that are
not dependent, but it is otherwise a merely cosmetic change. Such a
variable may also be glossed as a pre-applied higher order variable; for
example a variable of type φ : wff x can be interpreted as a predicate
P : U → bool where every occurrence of φ in the statement is replaced
with P x.

1.4.3 Abstract syntax

The expression grammar in MM0 is quite simple:

e ::= x | φ | f e

That is to say, an expression is either a first order variable, a second
order variable (note we do not write φ(x) as in FOL, it is just φ),
or a term constructor f (introduced by a previous term or def decla-
ration) applied to zero or more subexpressions e (and we prefer the
Haskell/Lisp-style adjacency notation for function application here).

This applies even to binding notations like al x p, which has two
arguments, a name x and a subexpression p which can contain x. So
for example the expression ∀y y = z is represented as (al y (eq y z)).

Expressions are interpreted in a context Γ, which declares the first
and second order variables to be used in the expression:

Γ ::= · | Γ, x : s | Γ, φ : s x

This reflects the concrete syntax {x: s} and (ph: s x) for binders that
we saw in section 1.3.

A statement is an expression which has a provable sort. We will
use A, B to denote statements. ∆ ::= A is a list of hypotheses; in the
concrete syntax these can either be unnamed, as in $ a -> b $ > . . . ,
or named using a binder (major_premise: $ a -> b $). (The names are
never referenced within an .mm0 file because the proofs of theorems
are not given, but they are more useful in .mm1 files, see Chapter 2.) In
the abstract syntax we will have no need for the names.

metamath zero: the logic 25

The valid declarations are:

δ ::= sort s sorts

| term f (Γ) : s x axiomatic term constructors

| def f (Γ) : s x abstract definitions

| def f (Γ) : s x = y : s′. e definitions

| axiom (Γ; ∆ ⊢ A) axioms

| theorem (Γ; ∆ ⊢ A) theorems

The syntax for a full file is then E ::= δ; this is also called an environ-
ment. We have already discussed sort declarations.6

term and def introduce new term constructors which can be used in
expressions. We supply a context Γ (a sequence of binders) and a result
type (possibly including dependencies) to create a maybe binding term
constructor. A simple definition like ‘and’ would look like:

def and(φ : wff, ψ : wff) : wff = not (im φ (notψ)).

The y : s′ part of def has not been used thus far. This is a list of first
order “dummy” variables that are permitted to appear bound in e. All
variables appearing in e must be declared, even bound variables. An
example of a definition with a bound variable is the unique existence
predicate, written here as both concrete and abstract syntax:

def eu {x: nat} (p: wff x) {.y: nat}: wff =

$ E. y A. x (p <-> x = y) $;

def eu(x : nat, p : wff x) : wff = y : nat.

ex y (al x (iff p (eq x y)))

In the concrete syntax, these variables are denoted with a prefix dot
as in {.y: nat}, and they can appear anywhere in the binder list but
regular variables cannot depend on them.

Definitions can also be “abstract,” meaning that the definition itself
is not specified, but there must exist a concrete definition making all
theorems to follow true. This can be used to specify an operation by
axioms. For example, we can define and axiomatically by asserting
that some term exists that has the properties of conjunction:

def an (a b: wff): wff; infixl an: $/\$ prec 34;

theorem anl (a b: wff): $ a /\ b -> a $;

theorem anr (a b: wff): $ a /\ b -> b $;

theorem ian (a b: wff): $ a -> b -> a /\ b $;

We could prove this specification by using ∼(a -> ∼b) as a witness
and then proving the three theorems. Abstract definitions can still

6 We omit sort modifiers to simplify
the presentation, and assume the most
permissive settings.

26 metamath zero: from logic, to proof assistant, to verified compiler

be unfolded like regular definitions within the proof file, which must
supply values for all definitions.

Finally we have axiom and theorem, which assert, within context Γ,
that statement A follows from hypotheses ∆. A general axiom or theo-
rem is really an inference rule Γ; ∆ ⊢ A, where ∆ is a list of hypotheses
and A is a conclusion, and Γ contains the variable declarations used in
∆ and A. For example, the Łukasiewicz axioms for propositional logic
in this notation are:

φ ψ : wff; · ⊢ φ→ ψ→ φ

φ ψ χ : wff; · ⊢ (φ→ ψ→ χ)→ (φ→ ψ)→ (φ→ χ)

φ ψ : wff; · ⊢ (¬φ→ ¬ψ)→ (ψ→ φ)

φ ψ : wff; φ→ ψ, φ ⊢ ψ

Things get more interesting with the FOL axioms:

x : var, φ ψ : wff x; · ⊢ ∀x (φ→ ψ)→ (∀x φ→ ∀x ψ)

x : var, φ : wff; · ⊢ φ→ ∀x φ

Notice that φ has type wff x in the first theorem and wff in the sec-
ond, even though x appears in both statements. This indicates that
in the first theorem φ may be substituted with an open term such as
x < 2, while in the second theorem φ must not contain a free occur-
rence of x.

1.4.4 Well-formedness

Now we turn to the typing rules of the logic. Each typing judgment
will be introduced with a box showing the syntax of the judgment.
The first one is (E) Γ ctx , which asserts that Γ is a valid context. The
(E) syntax indicates that the judgment has a parameter E that is held
fixed in the definition and is elided in the typing rules. In this case we
need it in the sort s ∈ E hypotheses.

(E) Γ ctx · ctx
Γ ctx x /∈ Dom(Γ) sort s ∈ E

Γ, x : s ctx

Γ ctx φ /∈ Dom(Γ) sort s ∈ E x ∈ Γ
Γ, φ : s x ctx

This just says that a context is well formed when every variable is in
a defined sort, and all dependencies of second order variables are first
order variables that appear earlier in the context.

We define typing of expressions and expression lists by mutual re-
cursion.

metamath zero: the logic 27

(E) Γ ⊢ e : s
(x : s) ∈ Γ
Γ ⊢ x : s

(φ : s x) ∈ Γ
Γ ⊢ φ : s

(f (Γ′) : s x) ∈ E Γ ⊢ e :: Γ′

Γ ⊢ f e : s

(E) Γ ⊢ e :: Γ′
Γ ⊢ · :: ·

Γ ⊢ e :: Γ′ (y : s) ∈ Γ
Γ ⊢ (e, y) :: (Γ′, x : s)

Γ ⊢ e :: Γ′ Γ ⊢ e′ : s
Γ ⊢ (e, e′) :: (Γ′, φ : s x)

For both first and second order variables, we say that the variable has
the sort it is declared with in the context. For functions, we require
(f (Γ′) : s x) ∈ E, which is to say, there is a term or def declaration
with this signature in the environment, and then the list of arguments
must match the types declared in the function, using the Γ ⊢ e :: Γ′

judgment.

The expression list judgment just matches each expression against
each variable in the target context Γ′. The only interesting case is
the one for first order variables, which requires that when match-
ing against a x : s binder the expression must be some y such that
(y : s) ∈ Γ. That is, a name can only be substituted for another name,
not a full expression. This is what prevents us from substituting 0 : nat
for the variable x : nat in ∀x, x < x + 1 to get ∀0, 0 < 0 + 1 which is
nonsense.

We also will need two definitions of the variables in an expression,
denoted VΓ(e) and FVΓ(e), read “variables in e” and “free variables in
e” respectively.

V(x) = {x} FV(x) = {x}
VΓ(φ) = x FVΓ(φ) = x where (φ : s x) ∈ Γ

V(f e) =
⋃

i V(ei) FV(f e) = FV(e :: Γ′) ∪ {ei | Γ′i ∈ x} where f (Γ′) : s x

FV(· :: ·) = ∅

FV((e, y) :: (Γ′, x : s)) = FV(e :: Γ′)

FV((e, e′) :: (Γ′, φ : s x)) = FV(e :: Γ′) ∪ (FV(e′) \ {ei | Γ′i ∈ x})

V(e) just collects all (first order) variables that are mentioned in the
expression, whether they are binding occurrences or not. Second order
variables yield their free variable list. So for example if φ : wff x y, then
V(∀x, φ) = {x, y} and V(∀z, φ) = {x, y, z}.

FV(e) respects binders, which is to say it removes variables that are
bound from the set. So FV(∀x, φ) = {y} and FV(∀z, φ) = {x, y}. The
FV(e :: Γ′) definition is an auxiliary used to define FV on function ap-
plications, by recursing on the type of f along with the subexpressions
e. First order variables are skipped, and for each second order variable
with a dependency on a first order variable, that first order variable
is removed from the FV set. This is the same binding structure that

28 metamath zero: from logic, to proof assistant, to verified compiler

we would get in higher order logic if each second order variable was
lambda-bound over the declared dependency variables before getting
passed to f . (We will explain the HOL interpretation in more detail in
section 5.3.)

Finally, we have the rules for environment well formedness. An
environment is composed of well formed declarations:

E env · env
E env E ⊢ δ decl

E, δ env

(E) δ decl
sort s decl

sort s ∈ E Γ ctx x ∈ Γ
term f (Γ) : s x decl

sort s ∈ E Γ, y : s′ ctx x ∈ Γ
(

Γ, y : s′ ⊢ e : s FVΓ,y:s′(e) ⊆ x
)?

def f (Γ) : s x (= y : s′. e)? decl

Γ ctx Γ ⊢ A : s Γ ⊢ B : s′

axiom (Γ; A ⊢ B) decl
Γ ctx Γ ⊢ A : s Γ ⊢ B : s′

thm (Γ; A ⊢ B) decl

These are mostly as expected:

• For a term to be well formed it needs to have a well formed context
and a well formed resulting type s x.

• For a definition to be well formed, in addition to the term rules, e
should be well formed of type s, and the free variables of e must be
listed in x. (In particular, since y is disjoint from Dom(Γ) ⊇ x, all
the dummy variables are bound, that is, FV(e) ∩ y = ∅.)

• An axiom or theorem must have well formed hypotheses and con-
clusion statements.

This is only the baseline checking of the theory contents – it does
not actually check theorems. So we have a second judgment for the
correctness of a declaration:

(E) δ ok
sort s decl

sort s ok

term f (Γ) : s x decl

term f (Γ) : s x ok

def f (Γ) : s x = y : s′. e decl

def f (Γ) : s x = y : s′. e ok

axiom (Γ; A ⊢ B) decl
axiom (Γ; A ⊢ B) ok

thm (Γ; A ⊢ B) decl Γ, y : s′′ ok Γ, y : s′′; A ⊢ B
thm (Γ; A ⊢ B) ok

There are two relevant changes from the δ decl judgment:

• Abstract definitions are not allowed: def f (Γ) : s x ok is false.

• Theorems must have proofs. The Γ; A ⊢ B judgment will be defined
in the next section (section 1.4.5).

metamath zero: the logic 29

We will say that an environment is “full” if it is provable and has no
abstract definitions:

E full · full
E full E ⊢ δ ok

E, δ full

To define provability on environments containing abstract defini-
tions, we define what it means for an environment to be refined and
extended with additional definitions and theorems:

E⇒ E′
E⇒ E

E⇒ E′ E′ ⇒ E′′

E⇒ E′′
E⇒ E′

E, δ⇒ E′, δ

E⇒ E, (def f (Γ) : s x) E, (def f (Γ) : s x)⇒
E, (def f (Γ) : s x = y : s′. e)

E⇒ E, thm (Γ; A ⊢ B)

Then, an environment is provable if it has a full extension:

E ok
E env E⇒ E′ E′ env E′ full

E ok

The purpose of a MM0 verifier is to validate a claimed proof of E ok,
given a .mm0 file with the concrete syntax of E. This claimed proof may
include additional definitions and theorems beyond those included
in the original .mm0 file, so it effectively encodes E′, as well as proof
objects for each thm (Γ; A ⊢ B) ∈ E′.

1.4.5 The MM0 proof judgment

The proof judgment (E; Γ; ∆) ⊢ A 7 asserts that statement A is deriv-
able from hypotheses ∆, with a context Γ of variables and dummy
variables that are available for use in the proof, and an environment E
that provides the lemmas and definitions that can be used.

Proof judgment (E; Γ; ∆) ⊢ A

p-hyp

A ∈ ∆

⊢ A

p-conv

⊢ A ≡ B ⊢ A

⊢ B

p-thm

(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]
∀i j x, Γ′i = x /∈ VΓ′(Γ′j)→ ei /∈ FVΓ(ej)

⊢ B[Γ′ 7→ e]

There are three ways to prove a theorem (up from two in Meta-
math8):

7 As a reminder, the parentheses in
(E; Γ; ∆) indicate that these are parame-
ters of the judgment that do not change
in the inductive rules.

It is notable that ∆ is a parameter, by
contrast to HOL or natural deduction
systems where hypotheses can be
introduced and discharged. MM0

models a “Hilbert system” in which
axioms are used rather than structural
rules, although it is possible to encode
structural rules in the target logic, if A
can itself be an implication or sequent.

For example, if the logic has a sequent
operator a |∼ b, then the→I rule of
natural deduction would look like
axiom ((a, b |∼ c) ⊢ (a |∼ b→ c)).

8 Metamath does not have a concept of
definitions as distinct from axioms, so
there is no convertibility rule or A ≡ B
judgment.

30 metamath zero: from logic, to proof assistant, to verified compiler

• The hypothesis rule p-hyp: if A ∈ ∆, then ⊢ A.

• The conversion rule p-conv: If A and B are convertible (defined in
section 1.4.6 below), then ⊢ A iff ⊢ B.

• Theorem application p-thm. If (Γ′; A ⊢ B) is an assertion in E
(which is to say, axiom (Γ′; A ⊢ B) ∈ E or thm (Γ′; A ⊢ B) ∈ E), then
we can substitute e for the variables of Γ′ to deduce that
Γ; A[Γ′ 7→ e] ⊢ B[Γ′ 7→ e], so if each Ai[Γ′ 7→ e] is derivable, then
B[Γ′ 7→ e] is also derivable.

Here the substitution operation A[Γ 7→ e] is defined as:

x[Γ′ 7→ e] = ei where x = Γ′i
φ[Γ′ 7→ e] = ei where φ = Γ′i

(f e′)[Γ′ 7→ e] = f e′[Γ′ 7→ e]

In other words, substitution A[Γ′ 7→ e] entails finding and replacing
all occurrences of each variable in A (which must be an element of
Γ′ if A is well typed) with the corresponding element of e. This does
no special handling around binders, and in fact even binder variables
themselves can be targeted by this “substitution” operation, making it
also play the role of α-renaming.

The theorem application rule is the core of the logic, and it is com-
plex so it deserves some attention. First, we find some theorem that is
declared in the environment, Γ′; A ⊢ B. For example, modus ponens:

φ : wff, ψ : wff; φ, φ→ ψ ⊢ ψ

Here Γ′ = (φ : wff, ψ : wff) and A1 = φ, A2 = (φ → ψ), B = ψ.
Then, we take some substitution e which is valid in the current context,
for example e1 = (0 < x), e2 = (1 < x). We have to check that
Γ ⊢ e :: Γ′, which is to say, (0 < x) : wff and (1 < x) : wff. (There is a
side condition, but in this case it is trivially satisfied.) We then apply
the substitution Γ′ 7→ e to A1, A2, B, resulting in the expressions:

A1[Γ′ 7→ e] = φ [φ 7→ 0 < x, ψ 7→ 1 < x] = (0 < x)

A2[Γ′ 7→ e] = (φ→ ψ)[φ 7→ 0 < x, ψ 7→ 1 < x] = (0 < x → 1 < x)

B[Γ′ 7→ e] = ψ [φ 7→ 0 < x, ψ 7→ 1 < x] = (1 < x)

Therefore, if ⊢ 0 < x and ⊢ 0 < x → 1 < x are derivable, then we
deduce ⊢ 1 < x.9

The final component of the theorem application rule is the side con-
dition ∀i j x, Γ′i = x /∈ VΓ′(Γ′j) → ei /∈ FVΓ(ej), which we will read
as “Γ′ 7→ e is an admissible substitution.” In words, it says that for
any two variables Γ′i and Γ′j in the context Γ′ where Γ′i = x is a first
order variable which is not in VΓ′(Γ′j) (if Γ′j = y is a first order variable

9 Of course, written this way, it seems
like we made a whole lot of fuss for
such a triviality. But what we have
gained by doing this is that the sys-
tem does not actually need to know
anything at all about modus ponens or
even implication to make this inference:
it simply applied a user-specified axiom
that had the form of modus ponens.
The object logic need not even have
modus ponens or an equivalent, which
makes it usable for studying logics
which express the rules in a different
way, and furthermore user can prove
theorems as inference rules and the
system will use them just as effectively
as core logical axioms: modus ponens is
in no way “special” here.

metamath zero: the logic 31

then this means x ̸= y, and if Γ′j = φ is a second order variable then
this means x is not one of the dependencies of φ), then ei (which is
necessarily a first order variable x′) is not among the free variables of
ej.

In our previous example, this condition was vacuous because Γ′ =
(φ : wff, ψ : wff) consists only of second order variables. Here are
two more examples from the FOL axioms:

x : nat, φ : wff x; φ ⊢ ∀x, φ vs. x : nat, φ : wff; ⊢ φ→ ∀x, φ

The first theorem is called the axiom of generalization or ax_gen, and
says that we can introduce ∀x in front of any provable theorem ⊢ φ.
This applies even if φ contains a free occurrence of x, as indicated by
the x in “φ : wff x”. By contrast, the second theorem (called ax_5 in
peano.mm0) says that φ implies ∀x, φ which does not hold if you allow
for free occurrences of x (for example x = 0 → ∀x, x = 0 does not
hold on the natural numbers).

Consider the effect of the admissibility side condition on these two
theorems. In the first case, we consider all pairs of variables from the
context such that one of them is a first order variable; this means (x, x)
and (x, φ). Then we restrict to the case that V of the second variable
does not contain x, but since V(x) = {x} and V(φ) = {x} there is no
such example and hence the side condition is trivial.

In the second case, we have V(x) = {x} and V(φ) = ∅ so (x, φ)

matches the preconditions, and therefore the admissibility criterion
requires that if you substitute (x 7→ y, φ 7→ p) in this theorem we must
have y /∈ V(p), which is to say, p does not contain a free occurrence of
y.

The notion of “strictly admissible substitution” is obtained by re-
placing FV with V on the right, that is:

∀i j x, Γ′i = x /∈ VΓ′(Γ
′
j)→ ei /∈ VΓ(ej)

(Using V or FV on the left makes no difference.) This is an underap-
proximation of admissible substitutions which is a bit easier to check,
so for performance and portability reasons the MM0 verifiers in fact
check strict admissibility in the theorem application rule. (We will use
p-thm-s to refer to the strictified version of the p-thm rule.) It is not
obvious, but the two yield an equivalent theory.

1.4.6 The MM0 convertibility judgment

The convertibility judgment (E; Γ) ⊢ e ≡ e′ is used in the conversion
rule, and asserts that two expressions are “equivalent” from the point

32 metamath zero: from logic, to proof assistant, to verified compiler

of view of the logic. This is a new addition of MM0 compared to
Metamath, which is necessary for unfolding definitions.

Convertibility (E; Γ) ⊢ e ≡ e′

c-refl

Γ ⊢ e : s

⊢ e ≡ e

c-symm

⊢ e ≡ e′

⊢ e′ ≡ e

c-trans

⊢ e1 ≡ e2 ⊢ e2 ≡ e3

⊢ e1 ≡ e3

c-cong

Γ ⊢ f e : s Γ ⊢ f e′ : s ∀i, ⊢ ei ≡ e′i
⊢ f e ≡ f e′

c-alpha

Γ ⊢ e =α e′

⊢ e ≡ e′

c-unfold

(def f (Γ′) : s x = y : s′. e′) ∈ E Γ ⊢ (e, z) :: (Γ′, y : s′)
∀i j, zi /∈ FVΓ(ej) ∀i j, i ̸= j→ zi ̸= zj

⊢ f e ≡ e′[Γ′, y : s′ 7→ e, z]

Most of the rules are fairly standard:

• c-refl, c-symm, c-trans say that convertibility is an equivalence
relation (on well typed terms).

• c-cong says that it descends into arbitrary term structure: every
term constructor respects convertibility.

• The c-alpha rule says that two terms that are α-equivalent are
convertible. (We include this in the formal theory for now but we
will later show that it is not needed, and MM0 verifiers do not have
this rule.)

• The only really interesting rule is c-unfold, which says that if
f (Γ′) := y. e′ is defined in the environment, then we are permitted
to replace f e with e′[Γ′ 7→ e, y 7→ z] where z are new dummy
variables that are mutually distinct and do not interfere with the
arguments e.

We say that e and e′ are α-equivalent and write Γ ⊢ e =α e′ if e′ is
equal to e[Γ 7→ v] where vi = Γi for all vi /∈ S, where S is a set of
first order variables such that FV(e) ∩ S = ∅, and also V(φ) ∩ S = ∅
for every second order variable φ appearing in e. In other words, e′

is obtained from e by replacing only bound variables. As in the c-
unfold rule, the variables in S must be mutually distinct and free
from anything else in Γ.

For example, ∀x, x = y is α-equivalent to ∀z, z = y because we can
replace x 7→ z in the expression (since x /∈ FV(∀x, x = y)), but it is
not α-equivalent to ∀x, x = z because y is free in the expression. This
notion is weaker than the standard FOL α-equivalence relation because
it only considers renaming all binders globally in the expression “in

metamath zero: the logic 33

one go,” which for example excludes α-equivalence of ∀x, ∀x, x = y
and ∀x, ∀z, z = y.

It is also weak in the presence of second order variables: if φ de-
pends on x then there is no expression p such that ∀x, φ is α-equivalent
to ∀y, p. We can overcome this limitation with a bit of help from the
object logic, however: it is possible to define an explicit substitution
operator in the logic and then prove ⊢ (∀x, φ)↔ (∀y, φ[y/x]).

1.5 The .mm0 specification format10

The .mm0 file is responsible for explaining to the reader what the state-
ment of all relevant theorems is. It closely resembles the axiomatic
description of section 1.4, but with a concrete syntax.

1.5.1 Sort modifiers

Sorts have modifiers that limit what roles they can play. These are
enforced by the verifier but not strictly necessary for expressivity.

• Every statement is required to have a provable sort, so that one can
assert that if x : nat then ⊢ x is nonsense and not permitted.

• The free modifier asserts that a sort cannot be used as a dummy
variable, in which case the sort may possibly be empty.

• The strict modifier asserts that the sort cannot be used as a name.
This is useful for metavariable-only sorts like wff.

• The pure modifier asserts that the sort has no expression construc-
tors (terms or defs). This is useful for name-only sorts like var.

1.5.2 No proofs

As its name implies, the .mm0 specification file is only about specifying
axioms and theorems, so it does not contain any proofs. This is an un-
usual choice for a theorem prover, although some systems like Mizar
and Isabelle support exporting an “abstract” of the development, with
proofs omitted.

The reason for this comes back to our breakdown of the purpose
of the different components of the architecture as described in the in-
troduction. The correctness theorem we are aiming for here is akin to
security with respect to an extreme threat model. As an illustration,
suppose you are trying to encourage formalization of some theorem
of interest, let’s say Fermat’s Last Theorem (FLT), and you organize
a competition. You write FLT as a .mm0 file, and open it up for the
world to submit proof attempts as corresponding .mmb files. Even in

10 https://github.com/digama0/mm0/

blob/master/mm0.md

https://github.com/digama0/mm0/blob/master/mm0.md
https://github.com/digama0/mm0/blob/master/mm0.md

34 metamath zero: from logic, to proof assistant, to verified compiler

the face of bad faith proof attempts, even if you are receiving gigabytes-
long machine learned proofs, you want the assurance that if the verifier
accepts it, then the theorem is proved from the axioms you defined. (It
would also be nice to know that the verifier cannot misbehave in other
ways, such as leaking your data to the internet, and in practice a proof
that the verifier is correct will have to establish the lack of general
misbehavior anyway, since most kinds of misbehavior such as buffer
overflows can potentially be exploited to trick the verifier to accept bad
proofs.)

This may seem obvious, but it is surprisingly common for proof
systems to contain convenience features that lead to security flaws,
or proofs of contradiction, that “no reasonable person would use,”
making the tacit assumption that the proof author is reasonable. In
practice this means that the proof itself must be inspected to ensure
that none of these exploits have been used, or else a social system
must be in place so that we can trust the authors; but this defeats the
point of formalizing in the first place.

Since an .mm0 file is a formalization target or problem statement, it does
not require or even accept proofs of its statements directly inline. Ax-
ioms and theorems look exactly the same except for the keyword used
to introduce them.

1.5.3 Abstract definitions

We can do something similar with definitions: we can write a defini-
tion with no definiens, so that it looks just like a term declaration. This
allows us to assert the existence of a term constructor which satisfies any
theorems that follow, which gives us a kind of abstraction. Sometimes
it is easier to write down characteristic equations for a function rather
than an explicit definition, especially in the case of recursive functions.

If we view the entire .mm0 file as a single theorem statement of the
metalogic, then this construction corresponds to a second order (con-
structive) existential quantifier, complementing the second order uni-
versal quantifiers that are associated to theorems with free metavari-
ables.

1.5.4 Local theorems and definitions

Once one is committed to not proving theorems in the specification
file, most dependencies go away. Theorems never reference each other,
and only reference terms and definitions involved in their statements.
So if focus is given to one theorem, then almost everything else goes
away, and even in extreme cases it becomes quite feasible to write

metamath zero: the logic 35

down everything up to and including the axiomatic framework in a
few thousand lines. In the above example of FLT, the specification file
must define the natural numbers and exponentiation, but certainly not
modular forms. These are properly the domain of the proof file. (The
degree to which this statement is accurate depends to some extent on
the theorem. FLT is something of an extreme case in that the state-
ment requires much less technology than the proof. However, there
is usually at least a 10 to 1 factor between definitions and proofs and
often much more; set.mm for example contains 29 times as many the-
orems as definitions, and the theorems are on average 4.7 times longer
than definitions, so removing all the theorems amounts to a 99.27%
reduction in formal content.)

But that means that the proof file must have license to introduce
its own definitions and theorems, beyond the ones described in the
specification file (but not sorts, term constructors, or axioms). And
this is exactly the piece that is missing in Metamath: Forbidding new
axioms is necessary in order to prevent a malicious proof author from
assuming false things, but in MM that also means no new definitions,
and that is an untenable expressivity limitation.

1.5.5 Notation

In the abstract characterization, we did not concern ourselves with
notation, presuming that terms were constructed inductively as trees,
but early testing of the concrete syntax revealed that no one likes to
read piles of s-expressions, and readability was significantly impacted.
The notation system was crafted so as to make parsing as simple as
possible to implement, while still ensuring unambiguity, and allowing
some simple infix and bracketing notations. Notations are enclosed in
$ sentinels (as in LATEX) so that parsing can be separated into a static
part (containing the top level syntax of the language) and a dynamic
part (containing user notations for mathematical operations that have
been defined).

The dynamic parser is a precedence parser, with a numeric hierar-
chy of precedence levels 0, 1, 2, . . . with an additional level max, form-
ing the order N ∪ {∞}. (max is the precedence of atoms and paren-
thesized expressions.) Infix constants are declared with a precedence,
and left/right associativity. (An earlier version of MM0 used nonas-
sociative operators and a partial order for precedence levels, but this
complicated the parser for no added expressivity. We recognize that
overuse of precedence ordering can lead to miscommunication, but
this is in the trusted specification file anyway, so the drafter must take
care to be clear and use parentheses responsibly.)

36 metamath zero: from logic, to proof assistant, to verified compiler

General notations are also permitted; these have an arbitrary se-
quence of constants and variables, and can be used to make compos-
ite notations like sum_ i < n ai as an approximation of ∑i<n ai. The
only restriction on general notations to make them unambiguous is
that they must begin with a unique constant, in this case sum_. This is
restrictive, but usually one can get away with a subscript or similar dis-
ambiguating mark without significantly hampering readability. (This
may be relaxed in higher level languages, but recall that we are still in
the base of the bootstrap here, so every bit of simplicity matters.)

Coercions are functions from one sort to another that have no no-
tation. For example, if we have a sort of set expressions and another
sort of class expressions, we might register a coercion set → class so
that x ∈ y makes sense even if x and y are sets and x ∈ A is a relation
between a set and a class. For unambiguity, the verifier requires that
the coercion graph have at most one path from any sort to any other.

1.6 The .mmb binary proof file11

Having a precise language for specifying formal statements is nice, but
it is most powerful when coupled with a method for proving those for-
mal statements. We have indicated several times now design decisions
that were made for efficiency reasons. How does MM0 achieve these
goals?

The only constraint on the .mmb format is that it somehow guides
the verifier to validate that the input .mm0 specification is provable. A
useful model to keep in mind is that of a powerful but untrustwor-
thy oracle providing hints whenever the verifier needs one, or a non-
deterministic Turing machine that receives its nondeterminism from
external input.

There are two fundamental principles that guide the design: “avoid
search,” and “don’t repeat yourself.” By spoon-feeding the verifier a
very explicit proof, we end up doing a lot less computation, and by
pervasively deduplicating, we can avoid all the exponential blowups
that happen in unification. Using these techniques, we managed to
translate set.mm into MM0 (see section 5.1.1) and verify the resulting
binary proof file in 195± 5 ms (Intel i7 3.9 GHz, single threaded). (This
is not a fair comparison in that we are not checking set.mm as is, we
are adding a bunch of information and rearranging it to be faster to
check, and observing that the result is faster to check. But in a sense
that’s the point.) While set.mm is formidable, at 34 MB / 590 kLOC,
we are planning to scale up to larger or less optimized formal libraries
to see if it is competitive even on more adversarial inputs.

11 https://github.com/digama0/mm0/

tree/master/mm0-c

https://github.com/digama0/mm0/tree/master/mm0-c
https://github.com/digama0/mm0/tree/master/mm0-c

metamath zero: the logic 37

1.7 High level structure

The proof file is designed to be manipulated in situ; it does not need
to be processed into memory structures, as it is already organized like
one. It contains a header that declares the sorts, and the number of
terms/defs and axioms/theorems, and then links to the beginning of
the term table and the theorem table, and the declaration list.

The term table and theorem table contain the statements of all theo-
rems and the types of all term constructors. These tables are consulted
during typechecking, and the verifier uses a counter as a sliding win-
dow into the table to mark what part of the table has been verified (and
thus is usable). This means that a term lookup is generally a single in-
dexed memory access, usually in cache, which makes type checking
for expressions (Γ ⊢ e : s) extremely fast in practice.

Variable names, term names, and theorem names are all replaced as
identifiers with indices into the relevant arrays. All strings are stored
in an index that is placed at the end of the file, linked to from the
header, and not touched by the verifier except when it wants to report
an error. It is analogous to debugging data stored in executables — it
can be stripped without affecting anything except the quality of error
reporting.

A term entry contains a table of variable declarations (the context Γ
and the target type s x) followed by a unify stream for definitions, and
a theorem entry contains a table of variable declarations (the context
Γ), followed by a unify stream (section 1.8).

1.8 The declaration list

After the term and theorem tables is the the declaration list, which
validates each declaration in the .mm0 file, possibly interspersed with
additional definitions and theorems. This data is processed in a single
pass, and contains in particular proofs of theorems. The global state of
the verifier is very small; it need only keep track of how many terms,
theorems, and sorts have been verified so far, treating some initial seg-
ment of the input tables as available for use and the rest as inaccessible.
Because terms and theorems are numbered in the same order they ap-
pear in the file, when a theorem appears in the declaration list it is
always the one just after the current end of the theorem table.

There are two kinds of opcode streams, proof streams and unify
streams. Unify streams appear only in the term and theorem tables,
and are used when a theorem is referenced or a definition is unfolded.
Proof streams appear in the declaration list and provide proofs for

38 metamath zero: from logic, to proof assistant, to verified compiler

σ ::= e | ⊢A | e ≡ e′ | e
?≡ e′ stack element

H, S, U, K ::= σ heap, stack, unify heap, unify stack

∆ ::= A hypothesis list

Save: H; S, σ ↪→ H, σ; S, σ

Term f : S, e ↪→ S, e′
(

f : Γ′ ⇒ s x, ⊢ e :: Γ′

e′ := alloc(f e : s)

)
Ref i: S ↪→ S, e (e := H[i])

Dummy s: H; S ↪→ H, e; S, e (e := alloc(x : s), x fresh)

Thm T: S, ē∗, A ↪→ S′,⊢A (Unify(T): S; e; A ↪→u S′)

Hyp: ∆; H; S, A ↪→ ∆, A; H,⊢A; S

Conv: S, A,⊢B ↪→ S,⊢A, A
?≡ B

Refl: S, e
?≡ e′ ↪→ S (e = e′)

Symm: S, e
?≡ e′ ↪→ S, e′

?≡ e

Cong: S, f e
?≡ f e′ ↪→ S, e

?≡ e′
∗

Unfold: S, f e
?≡ e′′, e′ ↪→ S′, e′

?≡ e′′ (Unify(f): S; e; e′ ↪→u S′)

Sorry:12 S, A ↪→ S,⊢A

ConvCut: S, e, e′ ↪→ S, e ≡ e′, e
?≡ e′

ConvRef i: S, e
?≡ e′ ↪→ S (H[i] = e ≡ e′)

ConvSave: H; S, e ≡ e′ ↪→ H, e ≡ e′; S

ConvSorry:12 S, e
?≡ e′ ↪→ S

USave: U; K, σ ↪→u U, σ; K, σ

UTerm f : K, f e ↪→u K, e

URef i: U; K, e ↪→u U; K (U[i] = e)

UDummy s: U; K, x ↪→u U, x; K (x : s)

UHyp: S,⊢ A; K ↪→u S; K, A

Figure 1.3: Proof stream and unify
stream opcodes and their operational
semantics. Proof steps have the form
C : ∆; H; S ↪→ ∆′; H′; S′, and unify steps
have the form C : S; U; K ↪→ S′; U′; K′,
but values that do not change are
suppressed. e∗ denotes the reverse of e.
12 The Sorry and ConvSorry opcodes are
optionally supported. They are
intended for checking of partial proofs.
They cause a “uses sorry” flag to be set
in the verifier, which causes the overall
run to fail.

metamath zero: the logic 39

theorems.

During a proof, the verifier state consists of a store (a write-once
memory arena that is cleared after each proof) which builds up pointer
data structures for constructed expressions, a heap H, and a stack S.
A stack element σ can be either an expression e or a proof ⊢ A, both
of which are simply pointers into the store where the relevant expres-
sion is stored. The nodes themselves store the head and sort of the
expression: x : s, φ : s, or f e : s, as well as precalculating V(e) (FV(e)
when constructing definition expressions). (There are also two kinds
of convertibility proof that can be on the stack, discussed below.)

A declaration in the list is an opcode for the kind of declaration, a
pointer to the next declaration (for fast scanning and parallelization),
and some data depending on what kind of declaration it is:

• Sorts and terms just mark the next item in the declaration table as
valid for use.

• A definition def f (Γ) : s x = y : s′. e reads a proof stream
Proof(f): ·; Γ; · ↪→ ·; Γ, y : s′; e (which is to say, it initializes the heap
with Γ and an empty stack, and expects a single expression e on the
stack after executing Proof(f)), and then checks that Unify(f), the
corresponding element of the declaration table, satisfies
Unify(f): ·; y : s′

∗
; e ↪→u ·; Γ′; ·.

• A theorem or axiom T : (Γ, ∆ ⊢ A) reads a proof stream
Proof(T): ·; Γ; · ↪→ ∆∗; Γ, y : s′; ⊢A (for axioms, the stack at the end
holds A instead of ⊢A), and then checks
Unify(T): ·;⊢∆; Γ; A ↪→u ·; Γ′; ·.

In short, we build up an expression using the Proof(f) proof stream,
and then check it against the expression that is in the global space
using Unify(f), so that we can safely reread it later.

At the beginning of a proof, the heap is initialized with expressions
for all the variables. An opcode like Term f will pop n elements e
from the stack, and push f e, while Ref i will push H[i] to the stack.
The verifier is arranged such that no expression is always accessed via
backreference if it is constructed more than once, so equality testing is
always O(1).

The opcode Thm T pops e from the stack (the number of variables in
the theorem), pops B′ from the stack (the substituted conclusion of the
theorem), then calls a unifier for T, stored in the theorem table for T,
which is another sequence of opcodes. This will pop some number of
additional ⊢ A′ assumptions from the stack, and then ⊢ B′ is pushed
on the stack.

The unifier is responsible for deconstructing B′ and proving that
B[Γ 7→ e] = B′, where B and Γ are fixed from the definition of T, and

40 metamath zero: from logic, to proof assistant, to verified compiler

e and B′ are provided by the theorem application. It has its own stack
K and heap U; the unify heap is the incoming substitution, and the
unify stack is the list of unification obligations. For example URef i
pops e from the stack and checks that U[i] = e, while UTerm f pops an
expression e from the unify stack, checks that e = f e′, and then pushes
e′ on the stack (in reverse order). The appropriate list of opcodes can be
easily constructed for a given expression by reading the term in prefix
order, with UTerm at each term constructor and URef for variables.
The UHyp instruction pops ⊢ A′ from the main stack S and pushes A′

to the unify stack K; this is how the theorem signals that it needs a
hypothesis.

Convertibility is handled slightly differently than in the abstract for-
malism. Most of the convertibility rules are inverted, working with a
co-convertibility hypothetical e

?≡ e′. In the absence of e
?≡ e′ judg-

ments on the stack, the meaning of the stack is that all ⊢ A statements
in it are provable under the hypotheses ∆, but S, e

?≡ e′ means that if
e ≡ e′ is provable, then the meaning of S holds. So for instance, the
Conv rule S, A,⊢B ↪→ S,⊢A, A

?≡ B says that from ⊢ B, we can de-
duce that if ⊢ A ≡ B is provable, then ⊢ A holds, which is indeed the
conversion rule.

The reason for this inversion is that it makes most unfolding proofs
much terser, since all the terms needed in the proof have already been
constructed, and the Refl and Cong rules only need to deconstruct those
terms.

The ConvCut rule is not strictly necessary, but is available in ac-
cordance with the “don’t repeat yourself” principle. It allows for an
unfolding proof to be stored and replayed multiple times, which might
be useful if it is a frequently appearing subterm.

The handling of memory is interesting in that all allocations are
“controlled by the user” in the sense that they happen only on Term f
and Dummy s steps. (Note that “the user” here is really the compiler,
since the .mmb format is how the compiler communicates to the ver-
ifier.) Because proof streams are processed in one pass, that means
that every allocation in the verifier can be identified with a particular
opcode in the file.

But the biggest upshot of letting the user control allocation is that
they have complete control over the result of pointer equality. That is,
whenever a statement contains a subterm multiple times, for example
g(f (x), f (x)), the user can arrange the proof such that these subterms
are always pointers to the same element on the heap (in this example,
Ref x, Term f , Save, Ref 1, Term g, assuming that the Save puts f (x) at
index 1). This would not be possible without hash-consing if the veri-
fier “built expressions on its own volition” in the course of performing

metamath zero: the logic 41

substitution or applying theorems. As such, the verifier can simply
require that every term be constructed at most once (or at least, any ex-
pressions that participate in an equality test should be identified), and
then expression equality testing in steps like URef and Refl is always
constant time.

An earlier version of the verifier actually put the data that would
otherwise need to be allocated into the instruction itself (i.e. the in-
struction might be Term(f , e, x), and the verifier is responsible for
checking that V(f e) = x). However, this wastes a lot of space (the
V(e) slots are typically 8 bytes) for ephemeral data. Putting too much
data into the proof file means more IO to read it, which can cancel the
performance benefits of not having to allocate memory. The memory
high-water is under 1 megabyte even after reading the largest proofs
in set.mm (which deliberately includes a few stress test theorems), so
memory usage doesn’t seem to be a major issue. Nevertheless, it is
useful to note that by encoding the heap and stack in the instruction
stream, it is possible to perform verification with O(1) writable mem-
ory, streaming almost all of the proof.

Verification is not quite linear time, because each Thm T instruction
causes the verifier to read Unify(T), which is approximately as large as
the (deduplicated) statement of T. It is O(mn) where n is the length of
the proof and m is the length of the longest theorem statement, but the
statements that exercise the quadratic worst case are rather contrived;
they require one theorem statement to be on the same order as the whole
file. An example would be if we have a theorem T : (a : nat ⊢ a · n̄ = 0),
where n̄ is a large unary numeral Sn(0), and we have a proof that
constructs and discards T(0), . . . , T(n̄), and then proves a triviality.
This requires only O(n) to state (because there are O(n) expression
subterms in the full proof), but each application of T(i) requires O(n)
to verify because it must match the large term n̄ in the statement of T,
resulting in O(n2) overall. However, it should be emphasized that this
is not a realistic workload; large theorem statements are very rare, and
the large theorems that are used are rarely referenced multiple times
in one proof, so for almost all reasonable proof libraries this achieves
linear time verification.

1.9 Compilation

Fairly obviously, the .mmb format is not meant to be written by hu-
mans; instead it is “compiled” from source in some other human read-
able language. (The design is similar to, and indeed inspired by, high
entropy machine code encodings.) The details of compilation depend
on the form of this language, but the backend will probably be simi-

42 metamath zero: from logic, to proof assistant, to verified compiler

lar regardless. For the MM1 compiler (see Chapter 2), after executing
the high level tactics and programs, the result is an environment ob-
ject in memory. Here expressions are stored in the usual functional
way as trees (pointer data structures) with possible but not mandatory
subexpression sharing, and proofs contain similar subproof sharing.
For example, consider the following short MM1 file and proof:

provable sort wff;

term im: wff > wff > wff; infixr im: $->$ prec 1;

axiom a1 (a b: wff): $ a -> b -> a $;

axiom mp (a b: wff): $ a -> b $ > $ a $ > $ b $;

theorem a1i (a b: wff) (h: $ a $): $ b -> a $ = ’(mp a1 h);

The proof (mp a1 h) is elaborated using first order unification to deter-
mine the necessary substitutions for term arguments, resulting in the
elaborated proof (mp a (im b a) (a1 a b) h). We also add an argument
with the theorem statement of each intermediate step to obtain

(mp a (im b a) (a1 a b (im a (im b a))) h (im b a)).

(Already at this point we will have a lot of “accidental” subterm shar-
ing, not shown in the printed s-expression, since it naturally appears
as a result of first order unification and substitution.) We then perform
hash-consing to ensure that every subterm has at most one index, also
throwing in the expressions for the hypotheses by using a synthetic
root node root. We end up with a structure like so:

let 0 := a, 1 := b, 2 := h, 3 := (im 1 0), 4 := (im 0 3),

5 := (a1 0 1 4), 6 := (mp 0 3 5 2 3) in (root 0 6)

We inline all references that appear at most once:

let 0 := a, 1 := b, 2 := h, 3 := (im 1 0)

in (root 0 (mp 0 3 (a1 0 1 (im 0 3)) 2 3))

And now we can produce a proof stream by traversing this expression
in postfix order, recursing into a numbered reference if it is the first
appearance of the number. The numbers 0-1 in this case are already
on the heap at the beginning of the stream because they are in the
context.13

Ref 0,Hyp2,

Ref 0,

Ref 0,Ref 1,Term im,Save3,

Ref 0,Ref 1, (Ref 0,Ref 3,Term im),Thm a1,

Ref 2,

Ref 3,

Thm mp.

13 The indentation and grouping is used
here to indicate the tree structure, but
the actual output is a plain list. The
superscripts on Hyp and Save indicate
what heap ID was associated to them.
This is known by the compiler because
the heap size goes up by one on each
heap-modifying instruction and is
initialized to 2 at the start, because
there are two variables a, b in the
theorem statement.

metamath zero: the logic 43

The unify stream is similarly obtained by hash-consing the expres-
sion (root (im b a) a) containing the statement of the theorem (note that
the hypotheses come in reverse order, after the conclusion) and writing
the result in prefix order:

UTerm im, URef 1, URef 0, UHyp, URef 0.

The overall .mmb file is thus produced by serializing the header, then
the term and definition statements, then the theorem statements, and
finally the declaration list which contains all statements in the order
they were declared, with proof streams for terms, defs, axioms and
proofs. While certainly more work than verification, the cost is not sig-
nificantly different from compilation from regular programming lan-
guages.

2

Metamath One

So far, we have talked about the MM0 verifier, which checks a very
explicit proof from some untrusted source. But in some sense checking
such proofs is the easy problem, when compared with the problem of
getting proofs in any kind of formally specified language in the first
place. In order to make this pipeline useful, we need a way to produce
formal proofs, and that means a front end to complement the MM0

back end.

There are two principal methods for producing .mm0/.mmb pairs:
Translate them from another language, or write in a language that is
specifically intended for compilation to MM0. (Translations are dis-
cussed in section 5.1.1.)

The MM1 language1 has a syntax that is mostly an extension of
MM0, but allows providing proofs of theorems. There are currently
two MM1 compilers, mm0-hs written in Haskell and mm0-rs written in
Rust, both of which provide verification, parsing and translation for
all the MM0 family languages (the three formats mentioned in this
paper, plus some debugging formats), and compilation of MM1 files
to MMB. Furthermore, they provide a server compliant with the Lan-
guage Server Protocol to provide editing support (syntax highlighting,
live diagnostics, go-to-definition, hovers, etc.) for Visual Studio Code,
extensible to other editors in the future.

If one takes the MM0 file from Figure 1.1 and changes it to have
extension .mm1, the VSCode editor mode will apply MM1 language
rules to it, resulting in a warning saying that id is not proven. We can
start the proof like so:

theorem id (P: wff): $ P -> P $ = ’_;

-- ^ error here: |- P -> P

We can apply theorems to get subgoals:

theorem id (P: wff): $ P -> P $ =

1 https://github.com/digama0/mm0/

blob/master/mm0-hs/mm1.md

https://github.com/digama0/mm0/blob/master/mm0-hs/
https://github.com/digama0/mm0/blob/master/mm0-rs/
https://github.com/digama0/mm0/blob/master/mm0-hs/mm1.md
https://github.com/digama0/mm0/blob/master/mm0-hs/mm1.md

46 metamath zero: from logic, to proof assistant, to verified compiler

’(ax_mp _ _);

-- ^ |- ?a -> P -> P

-- ^ |- ?a

Here ?a is a metavariable, a placeholder for a term that is not yet known.
They are usually resolved by unification, where applying theorems in
sequence causes the conclusion for one theorem to match the hypoth-
esis of the next and constraining the metavariables to be particular
terms. This process is effective enough that the term arguments of a
theorem usually do not have to be given, but in some cases the theo-
rem can be fully constructed even though all metavariables are not yet
solved:

theorem id (P: wff): $ P -> P $ =

’(ax_mp (ax_mp ax_2 ax_1) ax_1);

-- ^^^^ ?a: wff

The reason for this error is that it corresponds to the following proof:

1. (P→ (?a→ P)→ P)→ (P→ ?a→ P)→ P→ P ax_2

2. P→ (?a→ P)→ P ax_1

3. (P→ ?a→ P)→ P→ P ax_mp 1, 2

4. P→ ?a→ P ax_1

5. P→ P ax_mp 3, 4

This is a valid proof for any choice of ?a, but we still have to provide a
choice. We can use ! before a theorem application to turn all implicit
term arguments into explicit arguments so that we can provide a value:

theorem id (P: wff): $ P -> P $ =

’(ax_mp (ax_mp ax_2 ax_1) (! ax_1 _ _));

-- ^ ?a: wff

theorem id (P: wff): $ P -> P $ =

’(ax_mp (ax_mp ax_2 ax_1) (! ax_1 _ P));

-- OK

There is one more step we need to do to make this .mm1 function as
a proof of the .mm0 file from Figure 1.1, which is to mark the theorem
as pub:

pub theorem id (P: wff): $ P -> P $ =

’(ax_mp (ax_mp ax_2 ax_1) (! ax_1 _ P));

Theorems are considered local by default, which means that they can
be used as lemmas in further proofs but they do not themselves count
toward the proofs in the .mm0 file, which consists of the exported the-
orems, which depending on the nature of the development could be
almost nothing except for the “final theorem” and the prerequisites
for its statement, or it could be almost all the theorems for a reusable

metamath one 47

library file.

2.1 MM1 syntax

The syntax of MM1 is very similar to MM0, and in fact they share the
same parser in mm0-rs. It allows the following extensions to the MM0

syntax:

• import "foo.mm1"; statements can be used to have multi-file devel-
opments.2

• def and theorem accept visibility modifiers pub, abstract, local.

– pub is for definitions or theorems that appear in the correspond-
ing .mm0 file.

– abstract is for definitions only, when the corresponding defini-
tion in the .mm0 file has an omitted body. An abstract def can
reference local definitions.

• Type inference for variables is allowed:

def and2 (a b) = $ a /\ b = 0 $;

acts like

def and2 (a: wff) (b: nat): wff = $ a /\ b = 0 $;

assuming that /\ and = have been defined with the natural types.

• Anonymous theorems like theorem _: $ P -> P $ = ...; are legal
and will typecheck the proof but not add the theorem to the en-
vironment.

• Definitions (whether abstract or not) and theorems require proofs.
This has the form theorem foo: $ stmt $ = proof; where proof is an
s-expression that evaluates to a proof of $ stmt $.

• Statements of all kinds can have annotations like @annot theorem ...

where annot is an s-expression. These work similar to Python deco-
rators: the annotation value is passed to a hook along with the theo-
rem that was added. These can be used to maintain data structures
like simplification sets, or create additional automatically generated
theorems based on the definition or theorem.

• do { ... }; blocks can be written at the top level in order to evaluate
an arbitrary sequence of s-expressions.

• Formulas can contain antiquotation, for example using
$ 2 + 2 = ,{2 + 2} $ to construct the formula $ 2 + 2 = 4 $.

The last four cases make use of the second layer of syntax in MM1,
the MM1 metaprogramming language. This is a simple interpreted
language with similar syntax and semantics to Lisp, or more precisely
Scheme.3 Here are a number of examples showing basic behavior of

2 mm0-rs actually allows import state-
ments for .mm0 files as well as .mm1 files,
but they are not an official part of the
specification, and the mm0-rs join tool
can be used to concatenate .mm0 import
networks into a single file.

3 R. Kent Dybvig. The SCHEME pro-
gramming language. Mit Press, 2009

48 metamath zero: from logic, to proof assistant, to verified compiler

the primitives. In each case, the comment on the right shows what is
printed when the line is executed.

do {

"hello world" -- "hello world"

(display "hello world") -- hello world

(print (null? ())) -- #t

(print @ null? ()) -- #t

(if (null? ’(1)) 0 1) -- 1

(if (null? ()) 0 1) -- 0

{2 + 2} -- 4

’{2 + 2} -- (+ 2 2)

{1 < 2 < 3 < 4} -- #t

{1 < 2 < 3 < 3} -- #f

{1 * 2 * 3 * 4} -- 24

(max 1 2 3 4) -- 4

(min 1 2 3 4) -- 1

(hd ’(* 1 2 3 4)) -- *
(tl ’(* 1 2 3 4)) -- (1 2 3 4)

(list 1 2 3 4) -- (1 2 3 4)

(def x 5)

{x + x} -- 10

(def (x) 5)

x -- #<closure>

(x) -- 5

(def (fact x)

(if {x = 0}

1

{x * (fact {x - 1})}))

(fact 5) -- 120

((fn (a) ’’a) 1) -- (quote a)

((fn (a) ’’,a) 1) -- (quote 1)

((fn (a) ’(,a . ,a)) 1) -- (1 . 1)

(cons (list (def x 2) x) (x))-- ((2) . 5)

};

Most of the syntax should be familiar to those with a Lisp back-
ground.4 Some notes on the syntax:

• (f a b) is a function call to f with arguments a, b, i.e. the equivalent
of f(a, b) in C-like languages.

• ’expr is quotation, an operation that causes each expression to yield
itself instead of being evaluated. As shown above, (+ 2 2) evaluates
to 4, but ’(+ 2 2) evaluates to the expression (+ 2 2), a list with the
three elements +, 2, 2.

• Inside a quotation, ,expr is antiquotation, which evaluates expr nor-
mally and interpolates it into the expression. ’(+ 2 ,(+ 2 2)) eval-
uates to (+ 2 4).

• {a R b} means the same as (R a b). It is conventionally used for
infix operators like + so that they don’t need to be written in polish

4 Why Lisp? Because it is one of the
simplest languages to implement an
interpreter for. We can really use any
metaprogramming language here as
long as it is Turing complete.

metamath one 49

notation as is common in lisp.

• Square brackets [e1 ... en] are interchangeable with (e1 ... en).

• (f a @ g b) means the same as (f a (g b)). This is similar to the $

operator in Haskell for decreasing parentheses when there are many
nested tail expressions (which is very common in Lisp).

• (fn (x y) {x + y}) is a closure, in this case a function that takes two
arguments and adds them together. Closures can capture variables
in an outer scope, for example (fn (x) (fn (y) {x + y})) is a func-
tion of one argument x returning a function of one argument y
which will add x to y.

• (def x {2 + 2}) can be used to define and assign a new variable.
(def (f x y) {x + y}) is shorthand for (def f (fn (x y) {x + y})).

• (begin e1 e2 ... en) evaluates each of e1, e2, . . . in order, returning
the result of en.

2.1.1 Tactics

In addition to basic language features, there are also a number of fea-
tures that more directly tie in to the proof assistant:

• Formulas like $ P -> P $ use the math parser (including all declared
notations) to parse the expression into a parse tree. This example
is equivalent to writing ’(im P P). It also supports antiquotation, so
$ 2 + 2 = ,{2 + 2} $ evaluates to (eq (add 2 2) 4).

• The (match e [pat1 val1] ... [patn valn]) expression matches an
expression e against a number of patterns, which can also be for-
mulas. This is useful for defining proof automation.

A tactic is a metaprogram used to derive a proof. In order to facil-
itate tactic programming, these proofs are expressed as s-expressions,
where each theorem application is applied to its list of substitutions
and subproofs. For example, the proof of (a→ b)→ (a→ b) using id

would be written as (id (im a b)), and if we apply this to h : a→ b to
redundantly prove a→ b, the proof term would be

(ax_mp (im a b) (im a b) (id (im a b)) h)

where we pass a→ b for the substitution arguments,
(id (im a b)): (a → b) → (a → b) for the first subproof argument,
and h: a→ b for the second subproof argument.

There are a few built-in tactics, and the most important and flexible
built-in tactic is (refine). This tactic is so important, in fact, that it is
called by default whenever a proof yields a value other than #undef.

In a refine script, substitution arguments are omitted, so the same id

example would instead be written ’(ax_mp id h). The arguments can

50 metamath zero: from logic, to proof assistant, to verified compiler

be reinserted per-application using (! ax_mp (im a b) _ id h), where _

can be used to omit any part of the proof. If a part of the proof cannot
be inferred, for example if the proof is (ax_mp id _), the _ will have
an error highlight describing the expected type, and interactive proof
primarily goes by filling such holes with more subproofs.

If a function is passed directly inline in a refine script as in
(ax_mp id ,f), the function will be called like (f refine tgt) where
refine is a callback and tgt is the expected type of the subgoal. Quite
often this is the most convenient way to call custom automation in the
middle of a proof.

Here is an example that defines a general purpose refine script
conj-prove, which will prove theorems like a ∧ ((b ∧ c) ∧ d) → b by
searching in the tree of conjunctions for the expression on the right
hand side. It brings together many of the features we have discussed
so far.

delimiter $ (∼ $ $) $;

provable sort wff;

term im: wff > wff > wff; infixr im: $->$ prec 25;

axiom id (a: wff): $ a -> a $;

term and: wff > wff > wff; infixl and: $/\$ prec 35;

axiom anwl (h: $ a -> c $): $ a /\ b -> c $; -- axiomatizing these theorems for brevity

axiom anwr (h: $ b -> c $): $ a /\ b -> c $;

do {

-- (find lhs rhs) returns a proof of lhs -> rhs where lhs is a tree of conjunctions

-- with rhs in one of the leaves, or #undef if rhs is not found

(def (find lhs rhs)

(match lhs

[$,l /\ ,r $

(match (find l rhs) -- if it is a conjunction, then look on the left

[#undef

(match (find r rhs) -- or on the right

[#undef #undef] -- if not found, return #undef

-- if proof of r -> rhs found, apply anwr to prove l /\ r -> rhs

[result ’(anwr ,result)])]

-- if proof of l -> rhs found, apply anwl to prove l /\ r -> rhs

[result ’(anwl ,result)])]

-- if it’s not a conjunction, but it is rhs, then id proves lhs -> rhs, else fail

[_ (if {lhs == rhs} ’id #undef)]))

-- tactic to prove theorems like: |- a /\ ((b /\ c) /\ d) -> b

-- It receives two arguments, a callback ’refine’ to pass the constructed proof script,

-- and ’tgt’ which is the goal theorem

(def (conj-prove refine tgt)

-- match on the target type, e.g. a /\ (b /\ c) -> d

metamath one 51

(match tgt

[$,lhs -> ,rhs $

-- call find and return the proof

(refine tgt (find lhs rhs))]))

};

-- Examples of using ‘conj-prove‘

theorem _: $ a /\ b /\ c /\ (d /\ e) -> d $ = conj-prove;

theorem _: $ a /\ b /\ (d /\ e) -> d $ = conj-prove;

theorem _: $ a /\ b /\ (e /\ d) -> d $ = conj-prove;

theorem _: $ d /\ b /\ (e /\ d) -> d $ = conj-prove;

theorem _: $ d /\ b /\ (e /\ d) -> b $ = conj-prove;

theorem _: $ b -> b $ = conj-prove;

theorem _: $ d /\ b /\ (e /\ d) -> d $ = conj-prove;

-- This starts the proof with anwr and finishes the proof with conj-prove,

-- so it finds a different proof for the same theorem

theorem _: $ d /\ b /\ (e /\ d) -> d $ = ’(anwr ,conj-prove);

Other than simply calling refine, it is also possible to use the tactic
mode to prove a theorem. Every theorem starts with an initial tactic
state consisting of one goal, the theorem statement. The tactic state in
general consists of a list of subgoals that remain to be proven, and
refine will create subgoals for any _ that appears in the provided
script. Here are some other builtin tactics:

• (focus e1 e2 ... en) first stashes all goals other than the first one
and sets the goal state to consist only of the first goal. It then evalu-
ates each of the ei, and if it does not evaluate to #undef it is passed
to (refine). At the end, all subgoals should have been solved, else
there is an error, and the stashed goals are restored after the focus

block. This tactic is used mainly for block-structured proofs, since
everything related to solving the first goal appears in this block, and
later goals can be handled by subsequent focus blocks.

• (have ’h ty ’(pr)) will introduce a new named subproof named
h of statement ty, where ’(pr) is the proof of the statement.

Most tactics beyond this are written directly in MM1; we will discuss
this in section 2.2.1.

2.1.2 MM1 tooling features

The program mm0-rs is a Rust application with a number of tools for
working with MM1 files. It is approximately 26000 lines of code, with
an additional 29000 lines for the MMC compiler. Here is an incomplete
list of the things it can do:

• The mm0-rs join command will concatenate .mm0 files which use
import "file.mm0"; lines, which are accepted even though they are

52 metamath zero: from logic, to proof assistant, to verified compiler

not technically part of the MM0 specification. This allows the use
of import for structuring a development, while still being able to
pack everything in one file for “distribution” or to interface with a
simple (perhaps formally verified!) verifier which does not have a
full understanding of the filesystem.

• The mm0-rs server command will start an LSP5 server which sup-
ports many LSP features: auto-completion, hover info, go-to-defin-
ition, list all definitions, find references, syntax-aware rename, se-
mantic highlighting.

• The mm0-rs compile command will compile a .mm1 file and report
any warnings or errors. This is essentially the command-line ver-
sion of the server mode. This is also used for generating .mmb files
for completed developments.

• The mm0-rs doc command will generate a static website for speci-
fied theorems.

Most other features are exposed through the MM1 language itself:

• It is possible to import "foo.mmb"; from an MM1 file to import exter-
nal developments.

• The metaprogramming language has decent performance: it is com-
piled down to bytecode and evaluated, similar to Python.6

• There is support for the output string command, which will gen-
erate strings either on standard out or back into the metaprogram-
ming language.

2.2 Proof developments using MM1

2.2.1 The peano.mm1 metaprogramming library

The file peano.mm1 which acts as the axiomatic basis for almost all
subsequent work in this project is also home to a small (≈400 line)
library of extensions of the builtin facilities of the language.

• append, filter, len, range, for, iterate, find are basic list utilities.

• There are also basic tactics like exact, swap, suffices.

• There are utilities for debugging and error reporting.

• The (named) tactic wraps a proof script to fill all remaining variables
with fresh names. This solves the issue we saw with the id proof
requiring a term argument, in the case where the missing arguments
are variable names (which is a common scenario in FOL proofs).

• An annotation hook is added so that @f def foo evaluates (f ’foo)

if it is a function, and @_ def foo evaluates (default-annotate ’foo).

5 As the name suggests, the Language
Server Protocol is a standard commu-
nication protocol for language servers.
This means that an LSP server will
work on almost any editor, although the
majority of testing has been done on
Visual Studio Code.

6 We have plans to use Just-in-time com-
pilation (similar to Java or Javascript) to
execute even more efficiently, although
at the moment the cost is not too heavy.

metamath one 53

• The default annotation runs a metaprogram (derive-eq), which gen-
erates equality theorems for every definition in terms of equality
theorems on all the arguments. For example, for a definition like

@_ def bool (n: nat): wff = $ n < 2 $;

it generates the theorem

theorem booleq (_n1 _n2: nat):

$ _n1 = _n2 -> (bool _n1 <-> bool _n2) $;

by unfolding each side and then applying the corresponding equal-
ity theorem for “<”.

• The eqtac refine script automates proofs of a = b → P(a) = P(b),
which forms the core of most beta reduction / substitution theorems
in peano.mm1. For example applications of the theorem (∀x P) →
P[a/x] will usually use eqtac to evaluate P[a/x].

• An extensible general purpose evaluator (eval) is implemented by
attaching evaluation functions to some definitions and automati-
cally deriving other evaluation functions by unfolding other defi-
nitions. Since most things are defined over nat many things are
computable in this way. For example, we tell it that the term d0

is implemented by 0 and suc x is implemented by (fn (x) {x + 1})

and add x y is implemented by +, from which we can automatically
derive that (eval $2 + 2$) = 4.7

2.2.2 peano.mm1: Peano arithmetic

Peano arithmetic (PA) is a first order axiomatization of the theory of
natural numbers. The axiomatization8 consists of the following com-
ponents:

• Classical propositional logic, using essentially the Łukasiewicz ax-
ioms shown in Figure 1.1, with the addition of a truth constant and
axiom itru: $ T. $.

• Predicate logic implemented with the axioms from Figure 1.2.

• The non-logical axioms of PA: a term d0: nat (denoted 0) and
suc: nat > nat, axioms that say suc is injective and not equal to 0,
and the induction axiom:9

axiom peano5 {x: nat} (p: wff x):

$ [0 / x] p -> A. x (p -> [suc x / x] p) -> A. x p $;

• Class theory over nat. This introduces a new sort set which repre-
sents possibly infinite subsets of N, together with the x ∈ A and
{x | p(x)} operations and the axiom a ∈ {x | p(x)} ↔ p(a).

• A definite description operator the: set > nat such that the {x} =
x, and the A = 0 if A is not a singleton.

7 This is similar to the #eval command
from Lean: it is not proof-producing
and is only used to reflect numerical
assertions to actual Lisp numerical
operations where they can be executed.

Even without proof production this
can be useful: for example, the first
step in a primality prover is usually
to decide whether the number is in
fact prime or not, because if it is not
then there is generally a much better
proof than a failure in the middle of a
primality test.
8 https://github.com/digama0/mm0/

blob/master/examples/peano.mm1

9 It is worth pointing out that although
PA is “not finitely axiomatizable,’
this is clearly a finite axiomatization.
The ability for MM0, like Metamath,
to natively support schemes through
its use of open formula variables like
(p: nat x) is key to this – MM0

axioms and theorems correspond to
axiom and theorem schemes in the
traditional reckoning.

https://github.com/digama0/mm0/blob/master/examples/peano.mm1
https://github.com/digama0/mm0/blob/master/examples/peano.mm1

54 metamath zero: from logic, to proof assistant, to verified compiler

The last two points are not traditionally a part of PA, but they are
a conservative extension: any theorem about classes can be converted
to a theorem (scheme) about wff predicates with one designated free
variable, and any theorem about the A is equivalent to one without it
by rewriting using the theorem:10

theorem eqtheb: $ a = the A <->

(A == {x | x = a} \/ ∼E. y A == {x | x = y} /\ a = 0) $;

In future work, we would like to formalize the metatheory of this
axiom system, and prove that the provable formulas in this system
correspond to (schemes of) provable formulas in “textbook PA.”

Once the axiom system is set, we can start to prove some theorems.
As of this writing, peano.mm1 contains 2687 theorems, of which 668 are
automatically generated.

• The first 700 or so come before the non-logical axioms of PA and
concern general FOL, class theory, and the definite description op-
erator.

• The next 100 theorems are about +,−, ∗,≤,< and induction.

• There are several other basic operations like finite A, if, bool, min,
max.

• The operators x // y (flooring division), x % y, x || y (divisibility),
mod(n): x = y add another hundred theorems, including the quotient-
remainder theorem.

• The theory of the definitions b0 x := 2 * x, b1 x := 2 * x + 1, and
odd x, in addition to being useful for the obvious parity applica-
tions, is also leveraged to implement disjoint sums: Sum A B11 can
be defined such that the even numbers are doubles of A and the odd
numbers are double-plus-one of elements of B. This construct even
plays triple duty as a pairing operator for classes, since A and B are
uniquely recoverable from Sum A B.

• The pairing function (a, b) is defined as

def pr (a b: nat): nat = $ (a + b) * suc (a + b) // 2 + b $;

which is a direct transcription of the cantor pairing function:

(a, b) :=
(a + b)(a + b + 1)

2
+ b

We prove that this function is a bijection, and so we also get func-
tions fst and snd which invert it.

• Using ordered pairs, we can build a few “lambda operators:”

– The “regular” lambda operator we define when a(x) : nat as
λx. a(x) = {p | ∃x. p = (x, a)}. This is always a proper class,
since it has domain nat.

10 E. y p is the notation for ∃y p(y),
and A == B is equality of classes,
(A = B) := ∀z (z ∈ A↔ z ∈ B).

11 We will color Sum A B like a type
even though it is a regular definition,
because the MM0 built-in type system
becomes less relevant around this point
now that we have a more powerful
(dependent) type system expressed
using expressions of sort set.

metamath one 55

– We define λS x. A(x) := {z | π2(z) ∈ A(π1(z))}, so (a, b) ∈
λS x. A(x) ↔ b ∈ A(a). Because (−,−) is treated as a right
associative operator, we can build up n-ary relations such that
λS x. λS y. {z | p(x, y, z)} is notation for {(x, y, z) | p(x, y, z)}.

– We define λ f x. A(x) := {((a, b), y) | (b, y) ∈ A(a)}. This is use-
ful for building up n-ary functions, since λ f x. λ f y. λz. a(x, y, z)
expresses the equivalent of λ(x, y, z). a(x, y, z).

– ∏ x ∈ A. B(x) := {(x, y) | x ∈ A ∧ y ∈ B(x)}. This is the
dependent version of the cartesian product A× B. Notably, we
can prove that ∏ x ∈ A. B(x) is finite if A is finite and B(x) is
finite for all x ∈ A, which is analogous to the replacement axiom
of ZF (but for finite set theory).

There are also corresponding application operators:

– F @S a := {x | (a, x) ∈ F} is complementary to λS, in the sense
(λS x. A(x)) @S a = A(a).

– F @ a := the (F @S a) is complementary to λ, in the sense
(λ x. v(x)) @ a = v(a).

– F @ f a := λS y. F @S (a, y) is complementary to λ f , in the sense
(λ f x. F(x)) @ f a = F(a).

By combining all of these we get a fairly flexible way of defining
functions and predicates with arbitrary arity encoded as elements
of set (i.e. subsets of N).

• Using the aforementioned encoding using b0 and b1, we can treat N

as a disjoint sum of two copies of itself, and use that to interpret Z,
where b0 x means x and b1 x means −x− 1.

– x−ZN y is the N→ N→ Z function which takes the difference
of two natural numbers as an integer

– zfst x = max(x, 0) is the “positive part”, and
zsnd x = max(−x, 0) is the “negative part” of an integer

– x + y, −x, x − y, x ∗ y, x ≤ y, x < y, |x|, x | y, x mod y, and
the x = y (mod n) relation are defined on Z by operating on
positive and negative parts

• The gcd(x, y) function is defined, along with its key properties, as
well as coprime(x, y) and the modular inverse function invn(x).

• This builds up to the definition (due to Gödel):

pset(m, v) := {n | (∀x. 0 < x ≤ n→ x | m) ∧ m(n + 1) + 1 | v}

The key point is that the numbers m(n + 1) + 1 are coprime for
different choices of n, so if we fix m to be a number that divides all
the numbers up to N, then for any subset A ⊆ {0, . . . , N} we can
take the product v := ∏n∈A(m(n+ 1)+ 1) and so prove pset(m, v) =

56 metamath zero: from logic, to proof assistant, to verified compiler

A. The upshot is that every finite set A is encoded by a natural
number (in this case (m, v)).

• We prove the equivalent of the separation axiom and the replace-
ment axiom:

– ∃a. pset(a) = {x | x < n ∧ p(x)}
– finite(A)→ ∃a.∀x ∈ A. pset(a) @ x = v(x)

• This suffices to bootstrap a recursion operator satisfying:

– recz,S(0) = z

– recz,S(n + 1) = S @ recz,S(n)

and we can include the index of recursion as well:

– recnz,S(0) = z

– recnz,S(n + 1) = S(n, recnz,S(n)) 12

• Lots of useful functions can now be defined:

– xy, shl(x, y) := x · 2y and shr(x, y) := ⌊x/2y⌋;
– ns(a) := {x | odd(shr(x, y))} is registered as a coercion nat →

set, so that (x ∈ y) ↔ odd(shr(x, y)). The ns(x) function also
has the same separation and replacement properties as pset(x),
and it is a bit easier to reason about, but we needed pset(x) to
prove the existence of these functions in the first place.

– The inverse of ns(a) is lower(A) := the{n | ns(n) = A}. Since
every finite set is in the image of ns, we have that lower(ns(x)) =
x, and ns(lower(A)) = A↔ finite(A).

• We finish off finite set theory with singleton sets and insertion, the
set upto(n) = {0, . . . , n − 1} = 2n − 1, and some sets like bool,
P(A), and

⋃
A.13

– We also add another lambda: λ(x ∈ a). F(x) is (λx. F(x)) ↾ a,
which is finite since a : nat. So this is useful when we want a
function to be syntactically a finite set when it has a finite do-
main.

• We can now define strong recursion:

– srecS(n) := S(λ(x ∈ upto(n)). srecS(x))

• We can also have generalized recursion which depends on a varying
parameter:

– grecz,K,S(0, k) = z

– grecz,K,S(n + 1, k) = S(n, k, grecz,K,S(n, K(n, k)))

• Lists are defined by iterated application of the cons operator
(a : b) := suc(a, b). So for example a : (b : (c : 0)) = [a, b, c]. The list
recursion operator is defined using strong recursion:

– lrecz,S([]) = z

– lrecz,S(a : l) = S(a, l, lrecz,S(l))

12 We will omit the @ for brevity in the
following descriptions: when S : set,
S(a) denotes S @ a.

13 These are still subject to the usual
constraints that every element of a set
is a nat and hence can only encode a
finite set.

metamath one 57

• Many simple list operations can now be defined: length, member-
ship, append, nth-element, repeat, reverse, map, join, filter, zip,
take, drop, sublist.

These are all fairly basic results, but they make everything to follow
go more smoothly since PA is a “generous arena” for doing almost
anything with natural numbers or other countable sets, and is also
powerful enough to work with infinite sets, as long as they can be
constructed by a formula.

2.2.3 peano_hex.mm1: Hexadecimal arithmetic

This file14 builds on peano.mm1 with a definition of hexadecimal num-
bers and an arithmetic evaluator. This file is much more automatic:
there are 1129 more theorems, but only 138 of them are literally intro-
duced by the theorem keyword.

• It starts with the string axioms, which is an axiomatic extension of
peano.mm1 to include:

– A sort hex and terms x0, . . . , xf: hex which are the only inhabi-
tants of the sort

– A sort char and term ch h1 h2 : char where h1, h2 : hex

– A sort string with terms:

* s0: string representing the empty string

* s1 c : string where c : char

* sadd s1 s2 : string where s1, s2 : string for string append

MM0 has no mechanism for adding new sorts except by axiomatiza-
tion, so these are proper axiomatic extensions. See section 4.8.2 for
more information on why we want literal axioms here even though
these types can all obviously be modeled using nat, and hence this
is a conservative extension.

• On their own, these sorts cannot really be reasoned about because
we have no operations to do anything other than construct strings.
So we axiomatize some more functions:

– h2n: hex > nat, c2n: char > nat, s2n: string > nat which embed
the values as elements of nat

– The functions evaluate as expected on all the term constructors:

* h2n x0 = 0, . . . , h2n xf = 15

* c2n (ch hi lo) = h2n hi * 16 + h2n lo

* s2n s0 = []

s2n (s1 c) = [c2n c]

s2n (sadd s t) = s2n s ++ s2n t

14 https://github.com/digama0/mm0/

blob/master/examples/peano_hex.mm1

https://github.com/digama0/mm0/blob/master/examples/peano_hex.mm1
https://github.com/digama0/mm0/blob/master/examples/peano_hex.mm1

58 metamath zero: from logic, to proof assistant, to verified compiler

– Since we know that there are no other constructors of the hex sort,
we can also assert that h2n h < 16 for any h: hex. This cannot be
proved but we add it as an axiom.

– Similarly, c2n h < 256 and s2n h e. List (upto 256),
where List A is the set of lists of elements of A.

All of this is clearly seen to be a conservative extension, where we
interpret an element of hex as a nat less than 16, a char as a nat less
than 256, and a string as a list of chars. There are some facts like
13 < 16 that can be derived by combining these axioms, so we prove
these in advance of the axiomatization just in case.

The hex sort turns out to be convenient for representing arbitrary
numbers in hexadecimal, and base 16 is a good sweet spot between the
size of the initial times tables and the number of digits to work through
for doing arithmetic. We start by introducing hex: nat > hex > nat such
that hex n h := 16n + h. A number is represented as a list of hex ap-
plications applied to h2n, for example hex (hex (h2n xa) x1) xe is the
hexadecimal number 0xa1e or 2590. Writing hex as an infix operator
:x, this would be written xa :x x1 :x xe using MM0 notations, but by
adding a hook for numeric parsing the same term can be written in
MM1 as ,0xa1e or ,2590 (using antiquotation to insert a literal number
into the term, which is translated by a refine hook into a hexadecimal
expression).

Because it will be relevant for Chapter 4, let us look in more detail at
how the successor algorithm works. We have the following theorems:

theorem decsuc_lem (h1: $ h2n a = d $) (h2: $ h2n b = suc d $):

$ suc a = b $ = ’(eqtr4 (suceq h1) h2);

theorem decsucf:

$ suc xf = x1 :x x0 $ = ’(eqtr4 suc_xf hex10);

theorem decsucx (h: $ suc b = c $):

$ suc (a :x b) = a :x c $ = ’(eqtr3 addS2 (addeq2 h));

theorem decsucxf (h: $ suc a = b $):

$ suc (a :x xf) = b :x x0 $ = ’(eqtr suchexf (hexeq1 h));

(The proofs are not important, but included just to give a sense of how
they get discharged.) We use decsuc_lem and some one-shot automa-
tion to prove that, since we know h2n x5 = 5 and h2n x6 = 6 (these are
axioms) and suc 5 = 6 by definition, we can apply decsuc_lem to prove
theorem decsuc5: $ suc x5 = x6 $. We work out this theorem for all
16 digits, except for xf which has a different statement because of the
carry.

The successor algorithm is a metaprogram (mksuc a) returns a pair
(b p) where p: suc a = b.

• If the input has the form a :x xf, then let (b p) := (mksuc a) and
then return b :x x0 as the successor term and (decsucxf p) as the

metamath one 59

proof.

• If the input has the form a :x b for b ̸= xf, then let (c p) := (mksuc b)

and then return a :x c as the successor term and (decsucx p) as the
proof.

• If the input has the form h2n xf, then x1 :x x0 is the term and
decsucf as the proof.

• If the input has the form h2n xi for i ̸= 15, then h2n x(i + 1) is the
term and decsuci is the proof.

In short, we need two things for each proof:

• A collection of “pro-forma” theorems which have been prepared in
order to cover all of the cases of the algorithm. These are usually
single-purpose lemmas, and may be obtained by a secondary au-
tomation, in this case for the 15 decsuci lemmas which all have the
same form.

• An algorithm which encodes the actual execution pattern to con-
struct the proof. This execution pattern need not have anything to
do with the way the definitions are written (e.g. evaluating unary
natural numbers because Peano arithmetic is defined that way).

The large number of automatic theorems in this section is primarily
due to things like the addition table, which requires theorems for all
16× 16 = 256 combinations in the single digit case.15

The file contains:

• Proofs of a < b for all the digits for which this is true

• An algorithm which decides a < b, a = b, or b < a given two
numerals

• Proofs of a + b = c and suc(a + b) = c for all digits a, b

• An algorithm to decide a + b = c and suc(a + b) = c for numerals
a, b by mutual recursion

• Proofs of a · b = c for all digits a, b; an algorithm deciding this for
numerals

A meta-algorithm norm_num puts all these algorithms together to de-
cide any closed statement involving digits, suc, +, −, ∗, /, %, b0, b1,
or c2n. Some operations are deliberately not evaluated, like (x, y),
because these are normally used for structural purposes and not as
numerical operations.

2.2.4 mm0.mm1: A formal specification of MM0

The purpose of the file mm0.mm016 is to give a complete definition of
what it means for a MM0 file to be “provable,” starting from the string

15 There are ways to make the precom-
putation smaller at the cost of having
longer proofs “at runtime,” for example
by only keeping the table of a + b for
a ≤ b and applying a commutativity
step otherwise. But these proofs are
relatively low cost, and it is difficult to
estimate how much arithmetic will be
done using them during compilation
and assembly, but it seems safe to err
on the side of optimizing for runtime.

16 https://github.com/digama0/mm0/

blob/master/examples/mm0.mm0

https://github.com/digama0/mm0/blob/master/examples/mm0.mm0
https://github.com/digama0/mm0/blob/master/examples/mm0.mm0

60 metamath zero: from logic, to proof assistant, to verified compiler

data of the file, through lexing, parsing, elaboration, and then the ac-
tual abstract syntactic rules in section 1.4.3.

For example, the rule saying that a theorem is well formed:

Γ ctx Γ ⊢ A : s Γ ⊢ B : s′

thm (Γ; A ⊢ B) decl

is expressed as:17

theorem DeclThm (env args hs ret: nat) {x: nat}:

$ Decl env (DThm args hs ret) <->

Ctx env args /\ all {x | ExprProv env args x} (ret : hs) $;

And the rule for deriving that two term applications are definitionally
equal:

c-cong

Γ ⊢ f e : s Γ ⊢ f e′ : s ∀i, ⊢ ei ≡ e′i
⊢ f e ≡ f e′

is expressed as:

--| VerifyConv (env: Env) (ctx: Ctx)

--| (c: CExpr) (e1 e2: SExpr) (s: SortID): wff

--| means c is a proof of (env, ctx) |- e1 = e2 : s

def VerifyConv (env ctx c e1 e2 s: nat): wff;

...

theorem VerifyConvCong

(env ctx f cs e1 e2 s: nat) {args ret o es1 es2: nat}:

$ VerifyConv env ctx (CCong f cs) e1 e2 s <->

E. args E. ret E. o E. es1 E. es2 (

e1 = SApp f es1 /\ e2 = SApp f es2 /\

getTerm env f args ret o /\

VerifyConvs env ctx cs es1 es2 args /\

s = fst ret) $;

Note that these are theorems asserting that a certain definition,
VerifyConv in this case, which is left abstract, satisfies a certain defini-
tional unfolding theorem. The purpose of the mm0.mm1 file18 is to prove
that these theorems are provable, which is not completely trivial since
the definitions can sometimes involve mutual recursion or induction,
and MM0 has no native support for recursive def, so all definitions
have to go through the various recursors defined in section 2.2.2.

There is some rudimentary support for automatically generating
pattern matching theorems by recognizing sum / product construc-
tions like this:

def CRefl (e: nat): nat = $ b0 (b0 (b0 e)) $;

def CSymm (p: nat): nat = $ b0 (b0 (b1 p)) $;

def CTrans (p q: nat): nat = $ b0 (b1 (p, q)) $;

def CCong (f cs: nat): nat = $ b1 (b0 (f, cs)) $;

def CUnfold (f es zs: nat): nat = $ b1 (b1 (f, es, zs)) $;

17 Note that the MM0 type system is
not particularly useful at this point:
literally everything has type nat. This
is expected; types are instead expressed
using logical theorems. In this case,
Decl: Env -> Decl -> wff.

18 https://github.com/digama0/mm0/

blob/master/examples/mm0.mm1

https://github.com/digama0/mm0/blob/master/examples/mm0.mm1
https://github.com/digama0/mm0/blob/master/examples/mm0.mm1

metamath one 61

in order to generate induction lemmas, but there is nothing at the level
of e.g. the Isabelle inductive package yet, so most of the theorems are
proven with explicit proofs.

2.2.5 x86.mm1: A formal specification of the Intel x86 ISA

The MMC compiler described in Chapter 4 produces proofs of program
correctness relative to a model of the instruction set, so we first need
a model of the target instruction set. We target Intel x86 for this initial
implementation because it is practical and widespread, and extension
to other architectures is future work. The x86.mm0 file19 consists of two
main functions:

• The decode ast l relation, which is a single instruction disassem-
bler: ast e. XAST represents an x86 instruction as an element of an
inductive type / discriminated union, and l e. List u8 is a list of
bytes for the encoded instruction. Since it is a relation it is not in-
herently directed: it can be read either forwards or backwards to
function as either an assembler or disassembler.

• The execXAST k ast k2 relation, which expresses the result of step-
ping the machine state k e. Config on a given instruction
ast e. XAST to yield a new state k2 e. Config.

These are combined to form the step relation for the machine:

def step (k k2: nat): wff =

$ k e. Config /\ readException k = 0 /\ E. l E. ast (

readMemX k (readRIP k) l /\

decode ast l /\

execXAST (writeRIP k (readRIP k +_64 len l)) ast k2) $;

In words, this says that when the machine takes a step:

• The initial state should be a k e. Config (this is just a typing condi-
tion).

• The state can only take a step if the current exception state is 0,
meaning no error.

• The list of bytes l should be available in memory starting at readRIP k20

with executable permissions. (The length of the read is nondeter-
ministic and pinned down by the next rule.)

• The result of decoding l to an instruction should be ast.

• We increment RIP by the length of the instruction,21 and then use
execXAST to get the resulting state after executing ast.

The definitions of decode and execXAST are large, handling approx-
imately 89 instructions (although due to factoring out common parts
there are effectively only 25 instructions that need separate handling.)

19 https://github.com/digama0/mm0/

blob/master/examples/x86.mm0

20 RIP is the instruction pointer register,
also known as the program counter. It
represents the location where code is
currently being executed. The function
readRIP k gets the value of RIP
from the state, and writeRIP k v
is the state that results after setting
RIP := v.
21 In x86, operations that depend on the
current value of RIP like relative jumps
or RIP-relative addressing will actually
use the end of the current instruction
when performing such calculations.

https://github.com/digama0/mm0/blob/master/examples/x86.mm0
https://github.com/digama0/mm0/blob/master/examples/x86.mm0

62 metamath zero: from logic, to proof assistant, to verified compiler

This is still far short of the approximately22
1503 instructions in the full

specification. To ensure that this spec is an underapproximation of the
real one, any byte sequence that does not encode to one of the known
instructions is considered “undefined behavior” in the sense that it is
a stuck state: step k k2 is false for all k2 if the instruction pointer in k

points at an unknown instruction.

This suffices for “core x86” execution, but one instruction that we
model is the syscall instruction, which allows for interaction with the
environment. We need this instruction at least to exit the program, as
well as to read the input and produce output. This is a very versatile
instruction as is effectively a function call into the operating system, so
to support this we need to model some of the operating system’s state
in addition to the program state.

There are multiple ways to do this, and we choose the simplest one
which allows specification of one-shot IO programs. The basic idea is
that we extend the program state to include two lists i, o ∈ List u8,
where i is the list of all input that has been read since the start of the
program, and o is the list of all output that has been produced since the
start of the program. With this modification, it is possible to execute
through the read() and write() syscalls, such that the nondeterministic
possible executions trace out the input-output graph of the program.

The last component we need is a specification of ELF, the executable
and linker format, which is a file format that specifies how to load the
program into memory and start execution. This is used to define the
initial state of the program. We do not do a full specification (ELF is
complex and very extensible), but instead only specify ELF files with
one program segment which contains the executable data.23

The net result is the following set of definitions:

--| Asserts that ‘ks: KernelState‘ is a possible initial state

--| for the ELF file ‘elf‘

def initialConfig (elf: string) (ks: nat): wff;

--| Asserts that ‘ks: KernelState‘ can step to ‘ks2: KernelState‘

def ksStep (ks ks2: nat): wff;

--| Asserts that ‘k: KernelState‘ is an exit state

--| with exit code ‘ret e. u32‘

def execExit (k ret: nat): wff;

--| Extracts the input that has been read so far

def ksIn (k: nat): nat;

theorem ksInT: $ k e. KernelState -> ksIn k e. List u8 $;

--| Extracts the output that has been produced so far

def ksOut (k: nat): nat;

theorem ksOutT: $ k e. KernelState -> ksOut k e. List u8 $;

This is the starting point for the MMC semantics described in sec-
tion 3.3.4.

22 It is surprisingly hard to get a straight
answer to “how many instructions are
there in x86.” This is the number of
instruction classes in the Intel XED dis-
assembler library, which suffices to get
a ballpark estimate of the complexity of
the instruction set.

23 This is a very stripped down version
of the ELF spec, just barely enough for
the loader to use it to execute without
errors. “Normal” executables have
other sections which describe how the
program is divided into code and data,
not to mention debugging information.
Without this tools like objdump will not
work well, and anti-virus programs will
be suspicious of the executable.

metamath one 63

As with the mm0.{mm0,mm1} files, The file x86.mm124 covers all the
same definitions as the specification but has to prove their existence.
This one is logically simpler than mm0.mm1 but technically more com-
plex because the inductive types are much larger, so it uses more au-
tomation. There are also a few other theorems:

• The definitional theorems, mostly trivial or automatic.

• The typing theorems, like:

theorem readModRM_T (rex rn rm l: nat):

$ readModRM rex rn rm l ->

rn e. Regs /\ rm e. RM /\ l e. List u8 $;

While these seem like prime candidates for automation, the state-
ments are not entirely regular, because some parameters are inputs
and others are outputs. In this example, rex is an input, but its
type (which is rex e. REX) is not required to establish that the three
outputs rn, rm, l are well typed.

• A proof that decode ast l -> len l <= 12 for all supported instruc-
tions.25

• Some automation lemmas for proving decode theorems, which are
used by the assembler.

• There is another proof which is large enough to get its own file,
which we cover in the next section.

2.2.6 x86_determ.mm1: Determinism of the decode function

We mentioned that the step k k2 function first nondeterministically
reads some bytes starting at the instruction pointer, and then decodes
the bytes, and the two steps together are deterministic. To show this,
we need to know the following theorem:26

theorem decode_determ2 (ast1 ast2 l l2: nat):

$ decode ast1 l /\ decode ast2 (l ++ l2) ->

ast1 = ast2 /\ l2 = 0 $;

or the simpler version:

theorem decode_determ (ast1 ast2 l: nat):

$ decode ast1 l /\ decode ast2 l -> ast1 = ast2 $;

Now decode is by definition a large disjunction of cases like this one:

def decodeBinopHiReg (rex ast b l: nat): wff =

$ E. v E. x E. opc E. r (

splitBits ((1, v) : (1, x) : (2, 0) : (4, 13) : 0) b /\

readOpcodeModRM rex opc r l /\ opc != 6 /\

ast = xastBinop (rex_reg 1 opc) (opSizeW rex v)

(if (true x) (Rm_r r RCX) (Rm_i r 1))) $;

24 https://github.com/digama0/mm0/

blob/master/examples/x86.mm1

25 This is important because the specifi-
cation of x86 says that any instruction
which is longer than 15 bytes causes
an illegal instruction exception even
though it would otherwise be legal by
the grammar. Luckily we don’t tar-
get any instructions that can get that
long, but if we did we would have to
have additional side conditions in the
assembler.

26 https://github.com/digama0/mm0/

blob/master/examples/x86_determ.mm1

https://github.com/digama0/mm0/blob/master/examples/x86.mm1
https://github.com/digama0/mm0/blob/master/examples/x86.mm1
https://github.com/digama0/mm0/blob/master/examples/x86_determ.mm1
https://github.com/digama0/mm0/blob/master/examples/x86_determ.mm1

64 metamath zero: from logic, to proof assistant, to verified compiler

Most of this definition is not interesting, but in words, what this def-
inition says is that to decode one particular instruction layout, called
BinopHiReg here, the opcode byte b has the form 1101 10xv in binary
(that is, one of 0xD8, 0xD9, 0xDA, 0xDB), and then we read the Mod/RM
byte(s) to get an opcode extension byte opc (which should not be 6,
because this is an even more special instruction), and if all that goes
well then we can assemble a xastBinop instruction where the second
argument is either the immediate value 1 or the register RCX.

The challenge with proving decode_determ directly is that there are
two decode hypotheses, each of which is a disjunction of about 46 in-
struction formats, and considering all the cases results in 462 = 2116
possible ways all the instructions can interact. All the off-diagonal en-
tries of this matrix should be impossible, and the on-diagonal entries
reduce the problem to determinism lemmas for other definitions like
readOpcodeModRM. We want to prove this using something closer to O(n)
or O(n log n) work as a function of the number of instructions.

The solution is to leverage the same mechanism the processor itself
uses in order to distinguish all the cases, which is to branch on specific
bits of the opcode byte. Most instruction formats are distinguished
by the first byte; for example we saw 1101 10xv above, and another
instruction format has the form 1111 x11v. If we wanted to distinguish
these two, we would note that bits 2 and 5 (counting from the right)
are 0 in the first format and are 1 in the second format, so they are
mutually exclusive. The bits marked x and v are variables so we can’t
use them for discriminating the patterns.

For the two patterns mentioned, we generate the following theo-
rems:

theorem decodeBinopHiReg_bit (rex ast b l: nat):

$ decodeBinopHiReg rex ast b l -> T. /\

bit b 7 = 1 /\ bit b 6 = 1 /\ bit b 5 = 0 /\

bit b 4 = 1 /\ bit b 3 = 0 /\ bit b 2 = 0 $;

theorem decodeHi_bit (rex ast b l: nat):

$ decodeHi rex ast b l -> T. /\

bit b 7 = 1 /\ bit b 6 = 1 /\ bit b 5 = 1 /\

bit b 4 = 1 /\ bit b 2 = 1 /\ bit b 1 = 1 $;

These encode all the “fixed bits” of the opcode byte that we can poten-
tially branch on.

So now, rather than doing case disjunction on decode, we instead do
case disjunction on bit b i = 0 \/ bit b i = 1 for some i such that all
disjuncts satisfy either bit b i = 0 or bit b i = 1 (i.e. i is a fixed bit in
every pattern) and the two groups are as evenly balanced as possible,
and then prove that when bit b i = 0 all the bit b i = 1 disjuncts are
excluded and vice versa. We are left with two smaller disjuncts and

metamath one 65

we pick another bit to split the group in half again, and continue until
every group contains only one disjunct.27

The actual optimal case split tree was calculated offline, so the file
contains the tree itself. Everything else is automatically generated,
so adding a new instruction only requires adding an extra split to
the tree. The resulting proof is essentially O(n log n) since it is doing
a quicksort-like partition and recursion, although n is bounded by 8
since the splitting works at the level of bytes. For some instructions
there is a secondary opcode byte and so we actually need to do this
process twice.

2.2.7 separation_logic.mm1: Separation logic

This is a formalization of separation logic as required by the MMC

compiler. See section 3.3.1 for the general background for separation
logic.

• The heap join / disjoint union operation h1 ⊔ h2 = h

• The propositional lift h |= ↑ p ⇐⇒ p

• True and false lifted from propositions: ⊥ := ↑⊥, ⊤ := ↑⊤
• The empty heap: h |= emp ⇐⇒ h = ∅

• ‘And’, ‘or’, ‘implies’, ‘exists’, ‘forall’ lifted pointwise:

h |= P ∧Q ⇐⇒ (h |= P) ∧ (h |= Q)

h |= P ∨Q ⇐⇒ (h |= P) ∨ (h |= Q)

h |= P→ Q ⇐⇒ (h |= P)→ (h |= Q)

h |= ∃x ∈ A. P(x) ⇐⇒ ∃x ∈ A. h |= P(x)

h |= ∀x ∈ A. P(x) ⇐⇒ ∀x ∈ A. h |= P(x)

• The empty lift ↑e p := ↑ p ∧ emp

• The separating conjunction and separating implication:

h |= P ∗Q ⇐⇒ ∃h1 h2. h1 ⊔ h2 = h ∧ (h1 |= P) ∧ (h2 |= Q)

h1 |= P −∗ Q ⇐⇒ ∀h2 h. h1 ⊔ h2 = h→ (h2 |= P)→ (h |= Q)

• The indexed separating conjunction ∗x∈A P(x), which does not
have a simple expression but satisfies lemmas such as:

∗
x∈∅

P(x) = emp

∗
x∈{a}

P(x) = P(a)

∗
x∈A∪B

P(x) =∗
x∈A

P(x) ∗∗
x∈B

P(x) (A, B disjoint)

27 This procedure is not guaranteed to
succeed; for example the three 3-bit
patterns 01a, 1b0, c01 are all mutually
disjoint but there is no single bit that is
fixed in every pattern. Luckily x86 does
not have such cases.

66 metamath zero: from logic, to proof assistant, to verified compiler

• Strict weakening:28 (P ⊆ Q) := ∀h. (h |= P)→ (h |= Q)

• Weakening: (P⇒ Q) := P ⊆ Q ∗ ⊤

2.2.8 assembler-{old,new}.mm1: Assembler theorems (WIP)

These theorems pertain to the proof producing assembler which is part
of the MMC compiler. See section 4.3 for more information.

2.2.9 compiler-{old,new}.mm1: Compiler theorems (WIP)

These theorems pertain to the correctness proof for functions produced
by the MMC compiler. See section 4.4 for more information.

2.2.10 verifier.mm1: The bootstrap theorem

This is the final goal of the bootstrap. The specification verifier.mm0

is a simple combination of mm0.mm0 and x86.mm0 to assert that there ex-
ists (specified constructively via abstract def) a program which, when
executed according to x86 semantics, will only validate provable MM0

files. In other words, it is a correct verifier.

This theorem is not yet complete, and the file primarily contains
explorations in writing a program in MMC with an embedded specifi-
cation and proof.

28 This one is notated as ⊆ because it is
literally the subset relation on sets of
heaps.

3

Metamath C

The requirements of verified programs are somewhat specific and
not well addressed by either conventional programming languages
such as C, Python, Rust, Haskell etc., or proof assistants like Isabelle,
Coq, Lean, etc. On the one hand, for a low-level language we need
ways to talk about imperative procedures, pointer manipulation, while
loops, and the like, where every construct has a well defined lowering
to machine instructions. On the other hand,we need the expressiveness
to reason about the program inside an ambient logic, where infinite
sets and undecidable predicates are common. These can sometimes be
approximated by assertions, which have the advantage of being exe-
cutable, but these can only be used for dynamic analysis, and in the
context of a formal proof of correctness, executability of intermediate
assertions is irrelevant and limiting (although it is nice to have when
available).

Metamath C (abbreviated MMC) is a language that uses total func-
tions (provably terminating mathematical functions as one would find
in HOL or a dependent type theory) for its semantics, combined with
inline separation logic through erased “hypothesis variables” for rea-
soning about heap structures and non-functional components. This is
all on top of a C-like structure that is used to provide well defined and
predictable lowering to machine code.

MMC code is currently written in what amount to string literals
that are passed to the MMC compiler functions in MM1. As a result
it inherits the same Scheme-like syntax used in MM1 tactics. (This
may change in the future.) MMC has an extensible type system, and it
produces MM0 proofs in the back-end. Because types are implemented
as “type guards,” they have an independent existence as well, and
there are primitives for "casting" a variable to a type T given a proof
that it has type T.

68 metamath zero: from logic, to proof assistant, to verified compiler

3.1 On verified programming

The problem that MMC is designed to solve is that of writing pro-
grams which compile to an executable with full functional correctness
guarantees. There are several ways to approach this problem. Here
are four representative examples which tackle the problem in different
ways:

• Dafny1 is a “verification-aware programming language.” It has a
syntax similar to Java, but augmented with requires and ensures

clauses on functions, loop invariants and “lemmas” (functions
whose preconditions and postconditions express a theorem). Ver-
ification conditions are checked by Boogie2 and Z3

3. Dafny code
compiles to C#, Java, JavaScript and Go.

• Why3
4 is a “platform for deductive program verification.” The

user writes programs in a specification and programming language
called WhyML, and uses a variety of automated and interactive the-
orem provers to discharge verification conditions. Programs are ex-
tracted to OCaml.

• CompCert C5 is a compiler for the C language, which produces
machine code for PowerPC, Arm, x86, and RISC-V. The correctness
of the compiler with respect to the C specification down to assembly
is formally verified in Coq.

• CakeML6 is a compiler for a subset of Standard ML, which has been
verified in HOL4 relative to a specification of machine code.

In the following sections, we will look at how MMC differs from each
of them looking at different aspects of their operation.

The front end

Dafny and Why3 are both targeted at the front end: they provide a lan-
guage with a syntax for expressing functional correctness properties at
the level of the code itself. CompCert, however, is a C compiler: the
input language is exactly C, which makes it essentially unsuitable for
functional correctness proofs because C has no provision for design by
contract or even a strict type system. Similarly CakeML is an ML com-
piler, and while ML has a strict type system it is not a proof language,
and the types are not expressive enough for functional correctness.

Nevertheless, it is possible to overcome this modeling limitation,
and both CompCert and CakeML have been used for verified program-
ming. The key observation is that the compiler correctness proof takes
place in a proof assistant (Coq for CompCert, HOL4 for CakeML),
which means the semantics of the source language is expressed in this

1 https://dafny-lang.github.io/

dafny/

2 https://github.com/boogie-org/

boogie
3 https://github.com/Z3Prover/z3
4 http://why3.lri.fr/

5 https://compcert.org/compcert-C.

html

6 https://cakeml.org/

https://dafny-lang.github.io/dafny/
https://dafny-lang.github.io/dafny/
https://github.com/boogie-org/boogie
https://github.com/boogie-org/boogie
https://github.com/Z3Prover/z3
http://why3.lri.fr/
https://compcert.org/compcert-C.html
https://compcert.org/compcert-C.html
https://cakeml.org/

metamath c 69

language. So rather than using the front end directly, we can write
proofs in the proof assistant that a specific program syntax has the de-
sired behavior, and then the compiler correctness proof ensures that
the compiler will transform this program text into machine code with
the same behavior. The Verified Software Toolchain7 is a framework
for doing this in Coq, and CakeML also provides this functionality
when operated through HOL4.

However, this generally comes at a loss of front end quality, be-
cause Coq and HOL4 are general purpose proof assistants, and em-
bedded programming languages and the specifications being proved
get second-class notation.

Metamath C is embedded in the general purpose proof assistant
MM1, but it is closer to the Dafny / Why3 approach in that the pro-
gram syntax and type system includes embedded specifications.

The back end

The back end of a verified programming language is the lowest level
about which theorems are proved. In this sense Dafny and Why3 are
only skin-deep: the verification stops at the Dafny / WhyML language
semantics, which are extracted into various unverified programming
languages.

CompCert’s correctness proof goes to assembly language, which is
as far as it can reasonably go because of mismatch between the Com-
pCert memory model and the memory model of the target architec-
tures. (The company behind CompCert, AbsInt, also sells a separate
tool called Valex for verifying assembly outputs from the CompCert
compiler on some targets.) CakeML goes all the way to machine code,
although it still takes a dependency on an assembler in order to handle
linking to some tools from the C runtime library.

Metamath C produces ELF8 binary files directly, and the specifica-
tion of ELF describes how the files are loaded in memory and executed
(on x86). There is no dependency on the C runtime library because the
generated code makes system calls directly to the kernel.9

In principle, one can go even further than the ISA, by verifying the
hardware itself. However, this has the drawback that the most users
will not have the verified hardware, and this is unlikely to change un-
til open source processors become more mainstream. In our allegory
from the introduction, this amounts to Penny sending Victor a custom-
built processor, and with hardware access comes a much higher risk
that the processor is compromised (either because Penny is less qual-
ified to produce a reliable processor than Intel, or because Penny has
deliberately added a hardware backdoor in order to cheat). The social

7 Andrew W. Appel. Verified software
toolchain. In Gilles Barthe, editor,
Programming Languages and Systems,
pages 1–17, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg

8 Executable and Linker Format, the
standard executable format on Linux

9 This is only really possible on Linux;
most operating systems do not have
a stable syscall interface so compilers
are generally advised to make use of
the platform’s libc implementation.
To avoid the complication of dynamic
linking this is not currently being done,
but it would not be fundamentally
harder to specify the behavior of the
operating system interface or chosen
functions from libc.

70 metamath zero: from logic, to proof assistant, to verified compiler

process leading to hardware reliability is strong, and it is difficult for
a verified manufacturing process to overcome this head-start.

The proof mechanism

Different tools have different dispositions toward the proof of the com-
piler’s inner workings, or the way in which the verified programming
language avoids adding itself to the trust base of the verified program
itself (if it does so at all).

Dafny and Why3 both rely on SAT solvers in the back end. Dafny
lowers its programs to the Boogie intermediate language, which is then
translated into SMT problems for Z3. Z3 does not currently produce
proof objects which are suitable for reconstruction, so for the most
part it must be trusted here, and the translation must also be trusted
because the verification conditions are not knitted into an overall proof,
although this is in principle possible.

Why3 has a similar story, although it uses a wide variety of inter-
active and automated provers in the back end, which, although con-
venient for the user, means that the trust base of the verified program
involves the correctness of dozens of unverified tools: this kind of
diversification is a double-edged sword for those concerned with end-
to-end correctness.

As mentioned, CompCert is proven correct in Coq, which is in some
sense the best possible result, although it is important to clarify what
this means exactly. The proof in Coq shows that a certain function in
dependent type theory computes a mapping from source AST to as-
sembly syntax, which preserves execution behavior in a certain sense.
The function must then be run on a given source AST (for the pro-
gram the user is interested in) to produce a result, which may either be
performed in the Coq proof assistant directly using kernel reduction,
or the compiler can be extracted into a standalone executable which
produces binaries. Some aspects of the proof, like the assembly-level
verification, are delayed to this phase.

CakeML also uses this technique: most of the compiler is verified
once and for all, which proves the correctness of a certain HOL func-
tion, and then the EVAL function is used to evaluate the HOL function
and produce a proof of evaluation, which is then composed with the
CakeML correctness proof to produce a proof of correctness of the tar-
get machine code.

Metamath C takes a different approach than either Dafny/Why3

or CompCert/CakeML here, although it is more similar to the Com-
pCert approach. The critical observation is that proofs at “compiler
run-time” are fundamentally more flexible than compile-time proofs.

metamath c 71

Rather than proving the compiler itself correct, the compiler is inter-
preted as a “correctness proof generator,” which is allowed to be falli-
ble in a number of ways. Like tactics in Coq/Lean/Isabelle, the pro-
gram is not verified, and it is not part of the trust base because the
proofs it generates are passed to a simple and general purpose proof
verifier.

This technique is also known as translation validation (TV) or proof-
carrying code (PCC). The big advantage is that it allows us to freely in-
corporate unverified components like a register allocator, as long as the
results of these components can be checked for correctness. Checking
a solution is never harder than producing a solution, and often sig-
nificantly easier (this roughly corresponds to the difference between
the P and NP complexity classes). So this is a good way to get both
good performance, as well as aiming more directly to the purpose of
the compiler, which is to produce a proof that some machine code
performs according to the user’s specification.

Summary

The Metamath C compiler receives inputs in the MMC language, where
the user writes:

• the specification (what the program should do);

• the code (how the program should do it);

• and the proofs (how the program’s actions achieve its specification).

All this is at the level of the code itself – there is no reference to register
values in the specification or the code (although this is a potential
extension, analogous to asm() blocks in gcc). The compiler assists
at this stage by producing type errors and prompts to help the user
complete the proofs.

Once the proofs are type correct according to the MMC language,
the compiler takes over, lowering the proofs through each intermediate
language, all the way down to machine code. The lowest level proof
language is then “code-generated” into a block of bytes and a MM0

proof object about that block of bytes, which is the final output.

The MM0 proof asserts that the block of bytes satisfies the transla-
tion of the high level MMC specification. The translation is trivial for
pure propositions, so for example if the program produces a proof of
R(4) = 15 then the final theorem would say:

If the block of bytes P is interpreted as an ELF executable, loaded into
memory, and executed according to the x86 specification, then it will not
perform any undefined or unspecified actions and it will halt in a finite
number of steps,10 and if it halts with exit code 0 then R(4) = 15.

10 The compiler is currently geared
toward producing “total correctness”
proofs, i.e. termination is checked via
loop annotations. There is planned
support for both total and partial
correctness modes, which the user can
select as appropriate.

72 metamath zero: from logic, to proof assistant, to verified compiler

Although the proof is natively written in MM0, it targets a relatively
simple and portable logic (Peano Arithmetic) which means that the
proof can also be translated to a wide variety of proof systems (see
section 5.1.1).

3.2 A tour of Metamath C

MMC is a fairly complex language with many different interacting con-
cepts, taking inspiration from imperative programming languages (es-
pecially C and Rust), dependent type theory, and separation logic,
which can be overwhelming. So we will begin with some examples
and introduce new concepts incrementally.

An aside on syntax: The MMC syntax is not yet finalized, and the
current MMC parser is embedded in the MM1 programming language
and as such uses lisp-style s-expressions. In this book we will instead
use a concrete syntax which is closest to Rust.

3.2.1 Procedures

The top level syntax of a MMC program is similar to C: a list of function
declarations, type declarations and global variable declarations. There
are two kinds of functions, called “functions” and “procedures” and
introduced by the func and proc keywords respectively.

A procedure is a piece of code that receives zero or more parameters
and has zero or more return values. It is permitted to have effects like
I/O behavior, but it is required to terminate in finitely many steps (see
section 3.2.6). Here is an example of a procedure:

proc add2(x: u32, y: u32): u32 {

return (x + y) as u32;

}

This function adds two 32 bit unsigned integers and returns the wrapped
result. It is the equivalent of the following C definition:

unsigned int add2(unsigned int x, unsigned int y) {

return x + y;

}

Similar to Rust and other ML-inspired languages, blocks are expres-
sions and the last expression in a block is the return value, so the
following procedure is equivalent:

proc add2(x: u32, y: u32): u32 { (x + y) as u32 }

Procedures can return multiple values:

proc numbers(): u32, u32 { 0, 1 }

metamath c 73

Both function arguments and returns can depend on prior values:

proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)

}

This is a function which accepts two parameters, a 32 bit integer x and
an unused proof that x = 0, and returns two values: a value y (which
we choose to be 1), and value which is equal to x + y. This makes use
of the type sn(a) of values equal to a, and the expression sn(a): sn(a)
which is its canonical constructor.

The sn type is a simple way to express precise preconditions / post-
conditions for a procedure. We will discuss looser and more logically
complex preconditions / postconditions in section 3.2.12.

3.2.2 Functions

A procedure is opaque, which is to say the only externally visible prop-
erties of the procedure are given by its type signature. (As we have
seen, dependent types allow for expressing precise preconditions and
postconditions through the type signature, so this is not a significant
limitation.) However, because procedures are not (necessarily) pure,
they cannot appear inside types and pure expressions.

To address this issue, functions can be used instead. A function has
the same syntax as a procedure, but uses the func keyword instead.
Functions are compiled to both logical functions and machine code,
and they can be used in later pure expressions.

func add(x: nat, y: nat): nat { x + y }

proc example(): sn(add(2, 2)) { sn(4) }

Currently, functions are mostly unsupported, but they should be
able to support all language features except for non-termination and
side-effecting operations.

3.2.3 Variables

Basic straight-line code works as one would expect, except that the
type context (see section 3.3.3) keeps track of the values that variables
have been assigned:

proc statements(): sn(1: u8) {

let x: u8 := 1;

// x: u8 := 1

let y := x;

// x: u8 := 1, y: u8 := 1

sn(y)

}

74 metamath zero: from logic, to proof assistant, to verified compiler

(The comments after each line indicate the state of the type context
after each line. Since the context knows that y := 1, the last line type-
checks: sn(y) is equal to sn(1).

Variables can also be shadowed, and overwritten:

proc statements(): sn(1) {

let x := 1;

// x: nat := 1

let x := x + 1;

// x*: nat := 1, x: nat := 1 + 1

x <- x * 2;

// x**: nat := 1, x*: nat := 1 + 1, x := (1 + 1) * 2

sn(x)

}

The x** notation denotes a shadowed variable; shadowed variables are
not accessible by name but still exist in the context because they may
be used in the types of other variables. In straight line code there is no
difference between mutating a variable and shadowing it, but it makes
a difference in more complex control flow (see section 3.2.5).

3.2.4 Tuples and destructuring

A tuple type (A, B) represents a pair of values of types A and B. Tuples
can be created and destructured in let binders:

proc tuples(): sn(1), sn(2) {

let x: (nat, nat) := (1, 2);

let (one, two) := x;

sn(one), sn(two)

}

This program constructs a pair consisting of 1 and 2 and puts it in vari-
able x, then destructures the pair into two variables one and two, and
then returns them separately. The use of sn shows that the typechecker
knows that one := 1 and two := 2 after this sequence of operations.
Changing the sn(2) to sn(5) would result in a compiler error.

Tuples can also be dependent, and the fields of a tuple can be re-
ferred to by index or by name:

proc tuples2(): x: nat, sn(x + 1) {

let s: (a: nat, b: nat, h: sn(a + b)) := (1, 1, sn(2));

s.a, s.h

}

Procedures with multiple returns are also destructured at the call
site.

proc send_many(): x: nat, sn(x) { 1, sn(1) }

proc recv_many() {

let x, y := send_many();

metamath c 75

// x: nat, y: sn(x)

}

3.2.5 Control flow

The usual control flow mechanisms, if and while are available, but
with a dependent-type spin since we want to have access to informa-
tion about the result of conditional expressions.

proc if_statement(x: nat) {

if h: x < 10 {

// x: nat, h: x < 10

} else {

// x: nat, h: ∼(x < 10)

}

}

If a value is assigned differently in two branches, its value is lost:

proc if_statement2(b: bool) {

let x := 1;

let y := 1;

// b: bool, x: nat := 1, y: nat := 1

if b {

// b: bool, x := 1, y := 1

let x := 2;

// b: bool, x* := 1, y := 1, x := 2

y <- 2;

// b: bool, x* := 1, y* := 1, x := 2, y := 2

} else {

// b: bool, x := 1, y := 1

}

// b: bool, x: nat := 1, y: nat

}

Here we can also see the difference between shadowing and muta-
tion. The variable x was shadowed in the if branch, so a new variable
x was introduced and discarded, and after the if the old variable still
exists and still has its old value. On the other hand, y was reassigned
in the if statement, which has the same semantics as a reassignment
in C. As a result, after the if statement y could have either value 1 or
2, so the fact y := 1 is cleared from the type context and y retains only
its type.

While loops also provide access to the positive fact inside the loop
and the negative fact after it:

proc while_loop() {

let b := true;

let h2 := while h: b {

// h: b

76 metamath zero: from logic, to proof assistant, to verified compiler

b <- false;

};

// h2: ∼b
}

Loops also support break and continue. In fact, continue is required
at the end of loop bodies when termination proofs are used (see sec-
tion 3.2.6).

The other mechanism for complex control flow is label, which is
used to set up one or more mutually tail-recursive functions:

proc fact(x: nat): nat {

let result: nat := {

label rec(x: nat, y: nat) {

if x = 0 {

finish(y)

} else {

rec(x - 1, y * x)

}

}

label finish(y: nat) {

y // assigns y to the ’let result’ at the start

}

rec(x, 1)

};

result

}

The use of finish is gratuitous here, we use it only to demonstrate that
labels can call each other or themselves freely. These are not real func-
tions in the sense that they do not get their own call frame, and that
means that they can only be used tail-recursively: using 2 * finish(y)

in place of finish(y) in this example would be incorrect.

3.2.6 Termination

The MMC compiler is designed to be instantiated in one of two modes:
total or partial correctness.

• In total correctness mode the final theorem about the code asserts
that the program halts in a finite number of operations, it does not
perform any undefined behaviors, and if it does not fail then a cer-
tain predicate of interest (defined by the return type of the main()

function) holds.

• In partial correctness mode the final theorem asserts that the pro-
gram does not perform any undefined behaviors, and if the pro-
gram halts and does not fail then the predicate of interest holds.

The key difference, of course, is that halting is proven in the first for-

metamath c 77

mulation and assumed in the second formulation. For many applica-
tions partial correctness is sufficient: in particular, running the code is
a requirement to observe the lack of failure,11 and running the code
also provides observational evidence of halting, so in this sense par-
tial correctness is what we need to complement the facts acquired by
running the code.

On the other hand, for logical functions we do need that the pro-
gram halts for it to satisfy its definition, and it is also useful to have
as a sanity check that the program is really working as intended (since
non-termination can be used to provide well typed but useless pro-
grams).

In total correctness mode, all looping constructs (while, label, and
recursive functions) accept a variant expression, which increases or de-
creases toward a bound.12 For example, a desugared bounded for loop
would look like this:

proc for_loop() {

let x := 0;

while h: x < 10, variant(x < 10 := h) {

x <- x + 1;

// x*: nat, x := x* + 1

continue variant(p) // p: x* < x

}

}

The variant declaration variant(e < n := p) indicates that the expres-
sion e is increasing up to n, and p proves that inside the loop just after
the condition, e < n holds. It is complemented with the variant(p) at
the end of the loop, which proves that x* < x, that is, the old value of
the variant (in this case x) is less than the new value. Together, this
ensures that the loop can only be entered at most n− a times (where a
is the initial value of the variant, in this case 0).

3.2.7 Integral types and operations

MMC supports several integral types:

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

The types uN are the same as uN from Rust or uintN_t from C: they
are unsigned N-bit integers, capable of storing any integer in the range
0, . . . , 2N − 1. Similarly, iN corresponds to iN in Rust and intN_t in C,
the type of signed N-bit integers with the range −2N−1, . . . , 2N−1 − 1.

The type nat, already used many times in previous examples, repre-
sents the type of unbounded natural numbers, that is 0, 1, This is the
“native” integer type of the language, in the sense that numeric literals

11 If we have a program that performs
some exhaustive search to establish
a theorem, then even though we can
prove that if the search succeeds then
the theorem is true, this does not
establish the theorem until we actually
run the search and notice that it finds
no counterexamples.

12 Note that this only allows loops with
order type at most ω. It is possible
to do more complex recursion using
nested loops, and the syntax may in the
future be expanded to support larger
ordinal loops, but because the proofs
are conducted in Peano Arithmetic, the
compiler proof can’t support loops of
order type ϵ0 or higher.

In practice, ω recursion covers the
vast majority of patterns in real pro-
grams, and by adding an explicit “fuel”
parameter even general recursion can
be handled, replacing the possibility of
non-termination with the possibility of
failure by timeout.

78 metamath zero: from logic, to proof assistant, to verified compiler

Operation
closed in

Meaning
uN iN nat int

x + y − − + + addition
x - y − − − + subtraction
-x − − − + negation

x * y − − + + multiplication
x ^ y − − + + exponentiation

div(x, y) + − + + floored division (⌊x/y⌋)14

mod(x, y) + + + + modulo14

max(x, y) + + + + maximum
min(x, y) + + + + minimum
band(x, y) + + + + bitwise AND
bor(x, y) + + + + bitwise OR
bxor(x, y) + + + + bitwise XOR
bnot(x) + + − + bitwise NOT

shl(x, y) − − + + left shift (x · 2y)
shr(x, y) + + + + right shift (⌊x/2y⌋)

Figure 3.1: Integer operations. An
operation is “closed in uN” if the
underlying mathematical operation
yields values in uN when the inputs are
in uN. In this case applying the
operation will yield values in the type;
otherwise it will be promoted to the
next smallest type which is closed for
the operation (so for example adding
two u32 values yields nat).
14 Division by zero yields 0 (and
mod(x, 0) = x), but there is also a
three argument form div(x, y, h)
that accepts a proof that y ̸= 0.

have this type by default and most numeric operations return values
of this type, but because MMC does not have an implementation of
arbitrary-precision integers (a.k.a. bignums),13 nat can only be used in
limited ways in computationally relevant positions (see section 3.2.9).
Similarly, int is the type of unbounded positive or negative integers.

A key property of MMC is that algebraic operations result in their
exact untruncated values, which is why they often land in nat instead
of a fixed width type, and additional actions must be taken to reduce
the value to a fixed width type so that it can be implemented in the
computer. For example, it is possible to use nat as an intermediate
to calculate a wrapped result, like with the add2() example from sec-
tion 3.2.1:

proc add_as(x: u32, y: u32): sn((x + y) as u32) {

let z: nat := x + y;

sn(z as u32)

}

It is also possible to avoid wrapping and instead prove that the
value is in the target type:

proc add_cast(x: u32, y: u32, h: x + y < 2^32): sn(x + y: u32) {

let z: u32 := cast(x + y, h);

sn(z)

}

Finally, we can map it into the type by crashing on overflow (see
section 3.2.8):

13 This is partially a deliberate decision
to avoid unexpected and unpredictable
compilation results, and partially
simply because verified bignum imple-
mentations are a large project on their
own. The language might gain support
for this in the future.

metamath c 79

proc add_assert(x: u32, y: u32): sn(x + y: u32) {

let h: x + y < 2^32 := assert(x + y < 2^32);

let z: u32 := cast(x + y, h);

sn(z)

}

The available integer operations are shown in Figure 3.1.

3.2.8 Failure is always an option

As mentioned previously in section 3.2.6, the correctness theorem for
programs in MMC includes the possibility of failure. More specifically,
a “failure” here means user-visible abnormal termination, and in the
current implementation this means exiting with a non-zero exit code.15

It is important to note that it is unrealistic to have a theorem that
asserts that failure cannot occur, because there are unfortunately many
ways for a program to terminate abnormally that are not under control
of the running process. For example the operating system can choose
not to provide enough free memory for the program to conduct its
activities,16 or the program could get a SIGINT signal from the user
pressing Ctrl-C at the console (which can be caught) or a SIGKILL sig-
nal from the process manager or OOM killer (which can’t). Or the
computer could simply lose power.

The current design of MMC exploits the fact that the correctness
theorem allows for the possibility of failure to make the programming
language more convenient. Specifically, there is an assert(b): b ex-
pression in the language which returns a proof that any executable
boolean expression b is true. It is useful to supply facts to opera-
tions that have side conditions, like array indexing or casting such as
in the add_assert() example from section 3.2.7. Its implementation is
effectively if h: b { h } else { fail() } where fail() is a compiler-
implemented function that crashes the process.17

One of the most important reasons to allow for the possibility of
failure in any compiler, not just a proof producing one, is to make it
possible to “ignore” resource limits in verification, which hugely sim-
plifies verification tasks. For example, Coq and Lean have a nat type
which purports to be a model of natural numbers; you can even prove
it is infinite and has the properties you would expect of an unbounded
natural number type. But if you try to evaluate the closed, well typed
term 2264

: nat the implementation limits will certainly bleed through
– this will fail with an error condition not treated by the logic.

A potential future direction for the language would be to allow the
user to prove that code does not fail except in force majeure situa-
tions, by banning the explicit or implicit use of assert and explicitly

15 Some shells will indicate this auto-
matically, and in vanilla Bash you can
query the $? variable to see if the previ-
ous command terminated abnormally.

16 It is even possible for the user or
operating system to set the stack
space so low that the environment
variables don’t fit on stack, which
means that the program runs out of
stack before it reaches the _start

procedure (the program entry point), so
even a completely trivial program that
uses zero stack and exits immediately
could still run out of stack space!

17 The current implementation is simply
a call to the x86 ud2 instruction, which
is a special instruction which is “de-
fined to be undefined:” it causes the
processor to throw an illegal instruction
exception which results in the program
crashing with the SIGILL signal, which
appears as exit code 132 in bash, possi-
bly accompanied by the text “Illegal
instruction (core dumped)”.

This is obviously not a very user-
friendly way to abort the process;
future work includes replacing this
with a regular function which prints a
panic message and exits normally with
non-zero exit code.

80 metamath zero: from logic, to proof assistant, to verified compiler

bounding stack and memory usage.

3.2.9 Ghost variables

We say that a variable, expression or piece of code is ghost, or computa-
tionally irrelevant, if it does not exist in the generated code: it produces
no output. From the perspective of the user, ghost code is executed
just like other code, ghost variables can be mutated, stored in struc-
tures and passed around like regular variables, but any operations on
ghost variables are eliminated by the compiler.

Variables can be marked ghost at the point of declaration:

let x: ghost u8 := 2;

let ghost x: u8 := 2; // same as above

The compiler tracks usage of ghost variables to ensure that they do not
enter the data flow, but they can be used to perform computations that
are needed for the proof but not for the program. They can be used in
types (like the n in the type [T; n] of arrays of length n) as well as in
loop variants and invariants.

For the most part, the MMC compiler will automatically make ghost
determinations about variables: any variable that does not contribute
to the return value or some IO operation will be made ghost. (This is
analogous to dead code elimination in standard compilers.)18 How-
ever, there are still two legitimate uses for an explicit ghost marking:

• The user may wish to document that some code is not executed and
have the compiler uphold the property. Without the ghost marking,
a future change could potentially cause the code to be executed,
leading to either unexpectedly poor performance (if it is a reference
implementation which is not intended for execution) or a ghost er-
ror somewhere else (because the ghost code is doing something that
definitely can’t be compiled.)

• In function signatures, it can be impossible to determine locally
whether a certain variable is intended to be ghost or not. For exam-
ple:

proc id(x: u8): u8 { x }

Is the variable x here ghost or not? That is, does the code generated
from this function actually take a single value from the argument
register and copy it to the return register, or does it take no ar-
guments and do nothing? There is no way to tell by looking at
this code alone. So MMC defaults to assuming that the variables
are computationally relevant unless you explicitly mark variables
as ghost in the signature:

18 In MMC there are actually two inter-
pretations of “dead code elimination:”
code can either be removed from the
generated code (by marking more
things as ghost), or they can be re-
moved from the code and the proof (by
removing them entirely).

Currently the compiler makes no
attempt to do the second kind of dead
code elimination, but it is fundamen-
tally the same as ghost inference:
anything that does not appear in the
types or invariants in the return can be
removed.

metamath c 81

proc id(x: ghost u8): ghost u8 { x }

The main utility of ghost markings is on types that would otherwise
not already be ghost, like u64. Many types are explicitly zero-sized and
so ghost makes no difference, like () (the unit type, returned by expres-
sions that return “nothing”) or x = 1. (Recall that x = 1 is a boolean
expression but also a type. For example, in if h: x = 1 { . . . }, h is
a variable whose type is x = 1, and the existence of this fact in the
context allows us to know that x = 1 is true inside the scope of the if.)

3.2.10 Casting, type punning, and truncation

Type-casting is the conversion of values from one type to another. This
may entail a change of the logical value, the bit representation, or
both, and the classic “C cast” operation (T)x is ambiguous. In MMC

value-preserving type casts are performed with cast(x) or coercion
(i.e. using a value of type X where a value of type Y is expected), bit-
preserving and value-changing casts are performed with the pun(x)

operation, and other kinds of casting (like truncating conversion) is
performed with the x as T operation.

Conversion cast pun as coe. Meaning Logical value

uṀ → uṄ, Ṁ ≤ Ṅ + = + + widening (zero extend) x
iṀ → iṄ, Ṁ ≤ Ṅ + = + + widening (sign extend) x
uM → iṄ, M < Ṅ + − + + widening (zero extend) x
iM → uN, M ≤ N ⊢ = + − sign extend + wrapping x as uN

{u,i}Ṁ → uN, Ṁ ≥ N ⊢ = + − truncation + wrapping x as uN
{u,i}Ṁ → iN, Ṁ ≥ N ⊢ = + − truncation + wrapping x as iN

{u,i}Ṁ → bool ⊢ =,⊢ + − is boolean / nonzero x ̸= 0
bool → {u,i}Ṁ + = + − convert to {0, 1} if(x, 1, 0)

&sn x, &T, own T → u64 + + + − pointer value x
X → Y ⊢ =,⊢ − − treat as Y given proof varies

Figure 3.2: Possible kinds of conversion.
The entries for each kind of operator
indicate whether the operation is
allowed (+), disallowed (−), or allowed
with a proof side condition (⊢). The pun
cases are only allowed (=) if the source
and target have the same size.
A dot on a size variable means that ∞ is
a valid option, i.e. uṄ includes both
u16 and u∞ ≡ nat.

Figure 3.2 shows all the possible combinations and which of the
conversion operators can be used.

cast is used for downcasting or upcasting integers, preserving the
logical value.19 It has the syntax cast(x) or cast(x, h), and it takes a
proof (indicated with ⊢ in the table) in some situations:

• If converting numeric types X → Y such that X ̸⊆ Y as subsets of Z,
then h should be a proof that x: Y.

• If converting {u,i}Ṁ → bool, then h should be a proof that x: bool,
that is, x ∈ {0, 1}.

19 This is C implicit conversion, or Rust
into().

82 metamath zero: from logic, to proof assistant, to verified compiler

• If converting X → Y in general, h should be a proof that x: Y, but
the conversion may not always be possible if the compiler does not
know how to remap the bit representation from X to Y.

For truncation and generally non-value-preserving type casts, we
use the x as Y function.20 This function does not take a proof, and can
convert freely between numeric types in all cases except int → nat

(where a truncation and wrapping conversion is not meaningful). Be-
cause this is generally a value-changing operation, this appears as an
actual function applied to the value. The x as {u,i}N function in the
logical value column is defined as:

x as uN = x mod 2N

x as iN = ((x + 2N−1) mod 2N)− 2N−1

Type punning is the practice of reinterpreting a value without chang-
ing its bit-representation. For example, the type u8 represents numbers
0, . . . , 255 using a single byte of memory, while i8 represents numbers
−128, . . . , 127 also using a single byte of memory in two’s complement.
The representation of the number 200: u8 uses the bits 11001000, while
the representation of -56: i8 is also 11001000. Therefore, if we have
the number 200: u8 and reinterpret the bits at type i8, we find that we
have the value -56 even though we have not actually run any code or
changed memory in any way.

In MMC the pun(x, h) operation implements this kind of transfor-
mation.21 It significantly overlaps with the cast and as functions, but
it is more restrictive in that the source and target types need to have
the same size (number of bytes in memory), and it is guaranteed to be
a hardware no-op.

When the target type has nontrivial invariants (for example bool

requires that the stored byte is 0 or 1), these must be proved in the
provided proof argument. In particular, this is the method of choice
for restoring the type of a value that was taken by the typeof operator
(see section 3.2.12). For example, if x: u64 and we provide a proof that
x points to a value of type T, we can use pun(x, h) to construct an own T

at the location of x.

3.2.11 The empty type

As mentioned in section 3.2.8, boolean values are also types, the type
of proofs that the value is equal to true. So false is also a type – an
empty type (since false is not equal to true). C does not have empty
types, but Rust has the ! (“never”) type which serves this purpose,
and many dependently typed languages also have an empty type of
some kind.

20 This is C explicit conversion, or Rust
x as Y.

21 This is the C++ bit_cast() opera-
tion, or Rust transmute().

metamath c 83

The empty type, also known as the “bottom” type, is useful to en-
code in the type system that a certain position is statically unreachable,
and a function that returns an empty type is a function that never re-
turns. Logically, the main property of the empty type is that it has the
“principle of explosion:” from false we can derive a value of any type.
This is encoded in MMC as the unreachable(h: false) operator, which
receives a proof of false in the current context and “cancels the current
branch” of the code. This is equivalent to the unreachable_unchecked()

operator in Rust or any immediate undefined behavior in C like *NULL.
This has the effect of removing any branches that lead to the current
code path, or possibly deleting the entire containing function because
it can’t be called. As with the earlier discussion on “ghost code” (see
section 3.2.9), these blocks of code aren’t really deleted completely,
they are merely made “ghost,” so they still exist for typechecking pur-
poses but no code is emitted for them. For example:

// natural numbers are >= 0

// ignore the implementation of this theorem for now

func nat_nonneg(x: nat, h: ∼(x >= 0)): false { ... }

proc more_code(x: nat, h: x >= 0) { ... }

proc deleted_branch(x: u8) {

if h: x >= 0 {

more_code(x, h);

} else {

let contradiction: false := nat_nonneg(x, h);

// at this point we must be in dead code

unreachable(contradiction)

}

}

We have a branch on a condition x >= 0, but in the else branch we do
some proof work and deduce that in fact the situation is impossible,
at which point we call unreachable to tell the compiler about this. The
compiler transforms this into the following:

proc deleted_branch(x: u8) {

let h: x >= 0 := by_contra(λ h: ∼(x >= 0). {

let contradiction: false := nat_nonneg(x, h);

contradiction

});

more_code(x, h);

}

The by_contra(λ h. e) here is not surface syntax (MMC does not cur-
rently have lambdas / closures either), but is intended to represent a
proof method for (¬p → ⊥) → p as a lambda term. Nothing in the
block is executed, it is simply encoding a proof of ¬p → ⊥ that has
been extracted from the code. As a result, the actual generated code
just appears as a call to more_code(x) after h is removed and no branch

84 metamath zero: from logic, to proof assistant, to verified compiler

is performed.

There are several constructs which return a proof of false (or rather,
a value of any expected type, including false) as a way to signal that
they perform non-local control flow and anything after the expression
is dead:

• A return expression exits the function, so anything after a return is
dead.

• break and continue exit the current loop scope.

• Jumping to a label returns false, even though label blocks typically
evaluate to a value of some other type, because they are forced tail-
calls: the label does not return to the caller but instead exits the
containing block.

proc label_test(b: bool): u8 { // <- block returns u8

label foo() { // <- label cannot specify return

if b { return 1; } // return exits label_test(), not foo()

2 // <- label block returns a value of type u8

}

label bar() {

let h: false := foo(); // <- calling a label returns false

let x := 2 + 2; // this is dead code

unreachable(h) // <- satisfy the typechecker

}

bar() // <- this call also returns any type (in this case u8)

// anything here is dead code, bar exits the block

}

• A while true { ... } without internal break returns the negation of
the loop condition, so ∼true which is false. Infinite loops do not
proceed past the loop.

• assert(false) also returns false, because it crashes the program so
anything afterward is not executed.

• unreachable(h) also returns false. It might appear silly to produce
false if we already have a proof of false, but this also has the effect
of telling the compiler about this false proposition so that it doesn’t
have to search the context for false things all the time.22

3.2.12 Separation logic types

We have managed to avoid delving too deeply into separation logic in
the types mentioned so far, but the underlying proof methodology is
based on separation logic, and it is useful for many verification tasks to
have explicit access to separation logic connectives in the assertion lan-
guage when dealing more explicitly with “resources” in the machine
state.

22 Most production compilers do actu-
ally watch the context for construction
of uninhabited types, both because
they want to catch the unreachability as
early as possible, and also because they
want to report dead code warnings. We
will put this down as another avenue
for future work.

metamath c 85

Type Concrete syntax Typehood predicate a : − Meaning

∃x : τ1, τ2(x) (ex x: τ1, τ2(x)) ∃x : τ1, a : τ2(x) Existential quantification

∀x : τ1, τ2(x) all x: τ1. τ2(x) ∀x : τ1, a : τ2(x) Universal quantification

τ1 → τ2 τ1 -> τ2 a : τ1 → a : τ2 Non-separating implication
τ1 −∗ τ2 τ1 -* τ2 a : τ1 −∗ a : τ1 Separating imp. (magic wand)
τ1 ∧ τ2 τ1 && τ2 a : τ1 ∧ a : τ2 Non-separating conjunction

τ1 ∗ τ2 (τ1, τ2) a.0 : τ1 ∗ a.1 : τ2 Separating conjunction
τ1 ∨ τ2 τ1 || τ2 a : τ1 ∨ a : τ2 Disjunction
¬τ ∼τ1 ¬ a : τ Negation

ℓ 7→ v ℓ |-> v ℓ 7→ v Points-to assertion
e : τ [e: τ] e : τ Typing assertion
|τ| moved(τ)

∣∣ a : τ
∣∣ Persistent core of τ

Figure 3.3: Separation logic types. The
“Typehood predicate” column shows
the result of evaluating a : τ for the
type τ shown in the first column.

A type is a function that maps values to separating propositions
over machine states. That is, it is a true-or-false statement that refers
to portions of the machine state (registers and memory). This is a very
low level view, but it has the advantage that because it is so general,
users can define types of arbitrary complexity, containing invariants
and ownership semantics. Types also contain a size and an alignment,
although for the x86 instantiation of MMC all types have alignment 1.

So the interpretation of an expression e is a “value,” which we can
model as natural numbers, and types τ are modeled as functions map-
ping values to separating propositions, so e : τ is a separating proposi-
tion. Conversely, we can map a separating proposition back to a type
by using the e : τ type, which satisfies h : e : τ iff e : τ.

The separation-logic-inspired types in MMC are shown in Figure 3.3.

• The ∃x : τ1, τ2(x) type is expressed as part of the dependent tuple
construction we have already seen as (ex x: τ1, τ2(x)). This is al-
most the same as (ghost x: τ1, τ2(x)) but the ex modifier means
that the value of x is not available at the logical level either: if
p: (ghost x: τ1, τ2(x)) then p.0: ghost τ1 but if p: (ex x: τ1, τ2(x))
then p.0 is not well formed.

• Most of the binary operators operate “pointwise” on the value part
a, which is generally trivial when using these types to encode pure
separating propositions rather than types like u8. Nevertheless,
things like ∼u8 are well formed types which in this case would as-
sert that u8 is empty (so this is itself an empty type).

• The separating conjunction is expressed using the tuple type (τ1, τ2).
When the value part a is trivial this is equivalent to the usual sepa-

86 metamath zero: from logic, to proof assistant, to verified compiler

rating conjunction.

• The types ℓ 7→ v and e : τ have trivial value representation, as evi-
denced by the fact that a does not appear in the typehood predicate.

• The type |τ| or moved(τ) represents “the part of τ that remains after
removing everything that cannot be duplicated.” This has a recur-
sive definition over the types, but generally this has the effect of
retaining pure propositions x > 0 while stubbing out parts of the
type that cannot be copied like ℓ 7→ v to (). It satisfies the funda-
mental property τ ⇔ τ ∗ |τ|.

There are not many operations to deal with these types; the com-
piler generally just preserves these types without interacting directly
with them. But there are a few operations that work on the types:

• Pattern matching works on let (x, y): τ1 && τ2 := ..., but y gets
the type moved(τ2) if τ2 is not a copyable type.

• Patten matching also works on existential types (ex x: τ1, τ2(x)).

• The typeof(e): [e: τ] operator will capture the typehood predicate
for an expression and put it in a variable. This can be later used by
the pun operator (see section 3.2.10) to reconstitute the expression.

The main operation for handling these hypothesis variables is entail.
entail[e1, . . ., en] { p }: τ if ei : τi and p is a proof of
e1 : τ1 ∗ · · · ∗ en : τn ⇒ τ. This essentially allows users to exit the
MMC language in order to perform proofs of complex propositions.

The details of the proof language (the syntax for p) are still undeter-
mined pending more data gathering regarding the ease of use of these
proof blocks, but one proof method is to reference a theorem from the
ambient logic in which the low level correctness proof is being con-
ducted. This enables proving theorems in the MM1 proof assistant
and then using the theorems in an MMC program.

3.2.13 Pointers and arrays

Type
Equivalent in:

Typehood pred. x : − Meaning
C Rust

&sn η τ* &’a mut τ x = &η Pointer to place η : τ

refa τ – – refa x : τ A value of type τ stored in a
&aτ τ* &’a τ ∃v : refa τ. x = &v Shared pointer to τ

own τ τ* Box<τ> ∃v : τ. x 7→ v Owned pointer to τ

[τ; n] τ[n] [τ; n] – Array of n values of type τ

Figure 3.4: Pointer and array types.

metamath c 87

A pointer is a value that stores the location of another value. MMC

has a number of different pointer types, summarized in Figure 3.4, for
distinguishing between these different kinds of ownership:

• &sn η is a “singleton pointer to η,” where η is a place or “lvalue”
expression, usually a local variable like x. It is equivalent to sn(&η)

where &η is a pure expression denoting “the memory location of η.”
This is the most common pointer type used in MMC. Other pointer
types generally have to be destructured to get access to a singleton
pointer which can then be used for reading and writing.

• refa τ is not actually a pointer type but is introduced here because it
is used in the desugaring of the shared pointer type. The logical val-
ues in refa τ are the same as τ, but the data is “stored elsewhere,”
with the annotation a keeping track of what local variable(s) are af-
fected by writes to this value. The a annotation is roughly analogous
to the ’a “lifetime” annotation on the corresponding Rust type.

• &aτ is a shared pointer to an existentially quantified value of type τ,
stored externally in a. To use such a pointer you can pattern match
it to get v: refa τ and ptr: &sn v, at which point we know that *ptr
yields v.

• own τ is also an existential package, for an owned pointer. It also
can be pattern matched to get v: τ and ptr: &sn v.23

• [τ; n] is the type of arrays of size n and element type τ. This
does not involve a pointer indirection, the array is stored directly
in the value. Unlike the corresponding C and Rust types, n is a
ghost expression which need not be fixed at compile time, so this is
another example of a dependent type.24

The operations manipulating these types are:

• *ptr: τ works for pointers of type &sn η, &aτ, or own τ. In the first
case the resulting expression has value η, and in the other two cases
the expression has unknown value but known type τ.

• &e: &sn e produces a reference to e, which is either a place expres-
sion η or a regular expression e (in which case the expression is
evaluated into a temporary variable and the location of that tempo-
rary is returned).

• &sn η coerces to &τ when η : τ.

• Given an array arr: [τ; n], the expression arr[i, h]: τ is a place
expression (i.e. it can be used for reading and writing) when h : i <
n. The h can also be omitted, in which case assert(i < n) is used.

• Similarly, arr[a..+b, h]: [τ; b] is a place expression that “slices”

23 Currently MMC is not capable of
creating values of type own τ, because
it does not currently support malloc()
or other means of dynamic allocation.
This is future work, but at least the
effect on the type system is known.

24 Arrays which exist on the stack have
to have known size, however, because
the compiler does not use alloca() for
dynamic allocations on the stack. So to
take advantage of runtime values of n
one has to put the array behind some
kind of indirection or make it a ghost
value.

88 metamath zero: from logic, to proof assistant, to verified compiler

arr to a smaller array, consisting of indices a through a + b (exclu-
sive) in the original array. Here h must be a proof of a + b ≤ n.

• To construct a new array, the operations [e0, . . ., en−1]: [τ; n] and
[e; n]: [τ; n] work if the ei have type τ.

3.2.14 Mutable parameters

For modeling purposes, we want to think of mutation as being desug-
ared to a state monad, which is to say, every operation is passed the
mutable values and returns the new versions of all mutable values in
addition to the regular returns. However, we want to support muta-
tion directly in the compiler so that spurious copies are avoided when
possible.

The assignment operator x <- y; allows mutating variables inside a
function, but to propagate mutations between function calls we have
an additional mut annotation.

For example, here is a function that mutates a large array arr by
parameter passing:

proc replace_value_copy(arr: [u8; 100]): u8, [u8; 100] {

let old := arr[0];

arr[0] <- 42;

old, arr

}

proc caller() {

let arr: [u8; 100] := [0; 100];

let v, new_arr := replace_value_copy(arr);

arr <- new_arr;

}

If the compiler was clever enough, it could conceivably avoid the copy
of arr from the input to the output, but MMC is not that clever, and
at the call site we have to put the new array in a temporary variable
and reassign it to the original variable if we want to mutate arr in the
caller.

To explicitly represent mutation, we can instead pass a reference to
the array:

proc replace_value(mut arr: ref [u8; 100], ptr: &sn arr): u8 {

let old := ptr[0];

ptr[0] <- 42;

old

}

proc caller() {

let arr: [u8; 100] := [0; 100];

let v := replace_value(arr, &arr); // mutates arr

}

metamath c 89

The first argument to replace_value is a ghost parameter, which de-
notes the place that the ptr argument points to. As a result, the
(*ptr)[0] <- x; line in replace_value is directly changing the array de-
clared in caller’s stack frame.

Because of the use of dependent typing to express preconditions
and postconditions, it is often the case that the incoming value of a mut

parameter actually has a different type than the outgoing value. To
express this we can use the out modifier on returns:

proc double(mut x: u8): out[x] sn((2 * x): u8) {

x <- sn(cast(2 * x));

}

This example asserts that the input value x is mutated such that the
value after the call is twice the input value. out arguments do not count
as regular returns, so return sn(cast(2 * x)) would not work here;
the code must assign the specified returns to the function parameters
using x <- If a out argument is not specified, the mut argument is
assumed to have the same type as it had in the parameter list.

3.2.15 Global variables and constants

Global variables are variables that are stored in the data segment of
the executable, rather than on the stack frame of a function. Like with
mutable parameters, a function which reads or writes a global variable
actually takes it as an argument, except that the calling convention
says that the value passed is at a particular fixed location in memory
instead of in the argument registers as with normal arguments.

global CLOCK: u64 := 1;

const TICK_AMOUNT: u64 := 1;

proc tick(global mut CLOCK) {

CLOCK <- cast(CLOCK + TICK_AMOUNT);

}

proc example() { // "global mut CLOCK: u64" elided

tick();

tick();

}

In this example, we have a global variable CLOCK that is incremented
on every call to tick(). Every function implicitly has a list of globals
that it uses or modifies in its parameters; this list is inferred if not
specified, but it can be given explicitly if the function changes the type
of the global or expects the global to have a different type than the one
originally declared.

Constant declarations are similar to globals, but constants cannot
be modified; they are simply shorthand for compile-time expressions.

90 metamath zero: from logic, to proof assistant, to verified compiler

Large constants will be stored in the read only portion of the binary
and copied to local variables on each use.

3.2.16 Type definitions

type SmallishU8(n: nat) := (x: u8, h: x < n);

proc example() {

let _: SmallishU8(14) := (0, assert(0 < 14));

}

Type declarations are abbreviations for types. They can have type or
value parameters, and they will be unfolded as necessary.

3.3 Modeling MMC

A key difference between MMC and traditional programming lan-
guages is that the various features provided by the language are not
merely chosen for their convenience, but also because they have a
known semantics and we can lower them to a correctness proof. In
fact, MMC has largely grown from the “bottom up,” starting with very
few conveniences25 but a solid proof theory and growing in the direc-
tion of more syntactic sugar, instead of starting with the convenience
and working toward a complete semantics and correctness proof.

As a result, the proof context and Hoare logic interpretation of the
code is very clearly visible in terms of the user’s perspective on the
type context, because they have direct access to manipulate much of it.

3.3.1 Hoare logic primer

Before getting to its implementation in MMC, it will help to have some
context for Hoare logic in general, and its extension to separation logic.
Hoare logic26 is a methodology for reasoning about computer pro-
grams developed by Tony Hoare in 1969 and subsequently extended
by many other researchers.

The central notion is a predicate written {P} C {Q}, where P and
Q are propositions about the machine state, and C is a subprogram.
This asserts that if P holds of the machine state and C is executed, then
the execution will not “go wrong,” and furthermore if C terminates,27

then Q will hold of the state after execution of C.

25 The astute reader will notice that the
version of the language presented here
still lacks a great many conveniences
found in C and/or Rust such as enum
and union, (bounded) for loops,
uninitialized values, and lots and lots of
library functions.

26 C. A. R. Hoare. An axiomatic basis
for computer programming. Commun.
ACM, 12(10):576–580, Oct 1969

27 Hoare logic has variations for doing
either total or partial correctness, in a
similar manner to section 3.2.6. Here we
are considering the partial correctness
variant; the hl-while rule is more
complex in the total correctness variant.

metamath c 91

Hoare logic (example) {P} C {Q}

hl-skip

{P} skip {P}

hl-weak

P→ P′ {P′} C {Q′} Q′ → Q

{P} C {Q}

hl-seq

{P} S {Q} {Q} T {R}
{P} (S; T) {R}

hl-assign

{P[E/x]} x := E {P}

hl-if

{P ∧ B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} (if B then C1 else C2) {Q}

hl-while

{P ∧ B} C {P}
{P} (while B do C) {P ∧ ¬B}

This logic is already good enough to prove facts about simple pro-
grams: for example, the program x := 0 has the specification
{⊤} x := 0 {x = 0}, which we can prove by applying the hl-assign

rule to get {0 = 0} x := 0 {x = 0}, and simplifying the precondition
to ⊤ using the hl-weak rule.

One of the important properties about this logic is that it is com-
positional in the programs C: the proof of each program proceeds by
recursion on the program, proving facts about the pieces and compos-
ing them to proofs about the whole program. However, there are some
caveats:

• The hl-seq rule requires that we invent the intermediate predicate
Q. This is okay if we have a way of working out the postcondition
from the precondition or vice versa, but. . .

• The hl-assign rule needs to know the postcondition and derives
the precondition

• The hl-while rule needs to know the precondition and derives the
postcondition

• The hl-weak rule can be used to glue together proofs where the
precondition of one step doesn’t match the postcondition required
by the next step, but it provides no guidance regarding the interme-
diate variables P′ and Q′.

Put together, these make it difficult to automatically derive the re-
quired predicates to construct a proof of {P} C {Q} given only P, C, Q,
and the full problem of inferring appropriate loop invariants is unde-
cidable.28

For languages that have expressions, not just statements (and pure
expressions), the Hoare triple is modified to read {P} E {v. Q(v)},
because the expression E evaluates to a value v and the postcondition
may depend on that value. Here are some example rules:

28 Oded Padon, Neil Immerman, Sharon
Shoham, Aleksandr Karbyshev, and
Mooly Sagiv. Decidability of inferring
inductive invariants. ACM SIGPLAN
Notices, 51(1):217–231, 2016

92 metamath zero: from logic, to proof assistant, to verified compiler

hl-var

{P(x)} x {v. P(v)}

hl-assign’
{P} E {v. Q[v/x]}
{P} x := E {Q}

hl-add

{P} E1 {v. Q(v)} ∀v. {Q(v)} E2 {w. R(v + w)}
{P} (E1 + E2) {x. R(x)}

3.3.2 Separation logic

Separation logic29 is a more recent advance in program verification
methodology that modifies the propositions P and Q to not merely be
propositions referencing program variables, but to be separating propo-
sitions, or propositions about subsets of the program state.

To see why this makes a difference, let us consider extending the toy
language above with pointers. Suppose the operation ∗p ← E assigns
the result of expression E to the memory location described by p. In
Hoare logic, a reasonable logical rule for this would be:

hl-store

{P[M[p := E]/M]} ∗p← E {P}

Here M is a representation of memory as a function mapping ad-
dresses to values, and M[p := E] is the function defined as:

M[p := E](x) :=

E if x = p

M(x) otherwise

For example, suppose we know M(a) = 1 ∧M(b) = 1 beforehand,
and execute ∗a ← 2. If we take P to be M(a) = 2 ∧M(b) = 1, then by
applying hl-store we obtain

{M[a := 2](a) = 3∧M[a := 1](b) = 1} ∗a← 2 {M(a) = 2∧M(b) = 1}

so by applying hl-weak to change the precondition to the desired
M(a) = 1∧M(b) = 1, we are left with the goal:

M(a) = 1∧M(b) = 1→ M[a := 2](a) = 2∧M[a := 1](b) = 1.

Now M[a := 2](a) = 2 is true by definition, but M[a := 1](b) = M(b)
only if a ̸= b, so in fact our theorem is not provable. We need a ̸= b to
be an additional precondition to prove the theorem.

This is a well known problem, the bane of C compilers everywhere,
known as “pointer aliasing.” A function which receives two arbitrary
pointers does not know that writing to one does not affect the value

29 John C Reynolds. Intuitionistic
reasoning about shared mutable data
structure. Millennial perspectives in
computer science, 2(1):303–321, 2000

metamath c 93

of the other. It is possible to solve the problem in Hoare logic with
enough disequality assumptions, but these assumptions grow quadrat-
ically with the number of pointers in the program: every part of the
program potentially affects every other part of the program and we
have to explicitly opt out of such entanglement.

This is where separation logic comes to the rescue. We extend the
grammar of propositions with an operator P ∗ Q, called “separating
conjunction,” which asserts that P and Q apply separately to disjoint
pieces of the machine state. The assertion that a points to 1 is now
expressed as a 7→ 1, so in separation logic the Hoare triple we want to
prove is instead:

{a 7→ 1 ∗ b 7→ 1} ∗a← 2 {a 7→ 2 ∗ b 7→ 1}

The relevant rules we need to prove this are:

sl-store

{p 7→ a} ∗p← E {p 7→ E}

sl-frame

{P} C {Q}
{P ∗ R} C {Q ∗ R}

There are two important differences here besides the change of nota-
tion.

• sl-store has a nontrivial precondition now. It requires that p be
pointing to some value a (which is discarded), unlike the Hoare
logic rule which allowed any choice of P, including ⊤.

• The sl-store rule does not contain any arbitrary predicate P in it.
It doesn’t need it, because a Hoare triple like {P} C {Q} not only
requires that P be true, it also asserts that any part of the machine
state separate from P is untouched by C.
This is what licenses the frame rule sl-frame, which allows us to
screen out any part of the machine state irrelevant to this particular
line of code. In the example, this is how we can carry b 7→ 1 from
the precondition to the postcondition without ever explicitly having
to prove that a ̸= b. There could be a hundred other variables in the
context and there would be no quadratic growth of side conditions,
so we have restored spatial compositionality.

Let us turn now to the task of applying this general framework to
MMC in the subsequent sections.

3.3.3 The type context

The type context is the set of variables in scope, their types, and their
values. At any given position in a program, there is a type context that
determines the type correctness of the next expression to be executed.
For example:

94 metamath zero: from logic, to proof assistant, to verified compiler

proc example(x: nat) {

let y: nat := 1;

// Here the type context is:

// x: nat, y: nat := 1

// so the following is well typed:

let _: sn(1) = sn(y);

// and the following is a compile error

let _: sn(1) = sn(x); // ERROR

}

Evaluating an expression with side effects can cause the type context
to change:

proc example(b: bool) {

let y: nat := 1;

// b: bool, y: nat := 1

y <- 2;

// b: bool, y: nat := 2

if b {

y <- y + 1;

// b: bool, y: nat := 3

}

// b: bool, y: nat

}

Evaluating expressions can also cause separating propositions to be
“moved out” of the type context:

proc free(p: own u64) { ... }

proc double_free(p: own u64) {

// p: own u64

free(p);

// p: moved(own u64)

free(p); // compile error, already moved p

}

Type contexts are very closely related to the preconditions that show
up in Hoare logic. We saw in section 3.3.1 that if we want to not have to
specify all intermediate propositions we need to either derive postcon-
ditions from preconditions or vice versa, and in MMC it is reasoning
forwards, from preconditions to postconditions.

To forward reference a bit, the typing judgment for expressions
looks like Γ; δ ⊢ e : τ ⊣ δ′ where δ is the flow-sensitive part of the type
context (which includes the current types and values of variables) and
Γ contains the part that is only scope based (like the existence of vari-
ables, labels and loop labels, and other functions). This is translated to
a Hoare triple of the form {Γ̃ ∗ δ̃} e {v. Γ̃ ∗ δ̃′ ∗ τ̃(v)}, where ·̃ denotes
the translation of Γ and δ into separating propositions (and τ into a
function from values to separating propositions).

The simplest part of this is something we have already been taking

metamath c 95

advantage of in user code: A type τ is a function from values to sep-
arating propositions, so for each type we have to define what v : τ

means, and in most cases we have already done so in section 3.2. To
give some examples, v : u64 means v < 264, and v : own u64 means
∃v < 264. x 7→ v.

The flow-sensitive context δ contains mainly the typing assertions
for variables in the context. x : τ := e translates to the separating
proposition e : τ , and x : τ translates to x : τ . These are conjoined
with ∗ to form δ̃.

Finally, Γ̃ contains assertions about how the variables are tied to
the machine state itself. For example, that x: u64 is currently being
stored in register RAX (i.e. RAX 7→ x), while ghost z: u64 has no machine
state associated to it (i.e. emp), and y: u64 also has no machine state
because it has been optimized out. The compiler generally retains
control over how this mapping is performed as long as it adheres to
some constraints based on the input code (for example, ghost variables
must not have machine state), and as long as it can actually find code
sequences satisfying the desired semantics.

3.3.4 Toward a compositional program logic

The parameters of the underlying machine semantics are as follows:

• A set S of valid machine states.

• A relation ⇝ ⊆ S× S, where s ⇝ s′ denotes that s′ is obtained in
one primitive step from s.

• A relation exits ⊆ S× u32, such that exits(s, c) indicates that s is an
exit state with exit code c.

• A relation init : u8∗ → P(S), where s ∈ init(p) indicates that if p is
the input program, s is a valid initial state ready to execute the code
on the some input.

• A function in : S → u8∗ which extracts the list of bytes on standard
input that have been consumed since the start of the program.

• A function out : S → u8∗ which extracts the log of all data printed
on standard output since the start of the program.

The step relation is not assumed to be deterministic, and we have
the following conventions:

• A state satisfying exits(s, 0) is a successful exit state

• A state satisfying exits(s, c) for c ̸= 0 is a failure state

• A state satisfying ¬∃s′. s⇝ s′ (and ¬∃c. exits(s, c)) is a stuck state

96 metamath zero: from logic, to proof assistant, to verified compiler

We must avoid stuck states because they represent places where
undefined behavior can occur: they may include running unspecified
instructions or taking operations outside the model, which may inval-
idate the assumptions of the proof. Failure states are a permitted way
to end execution (see section 3.2.8), and we promise nothing about the
execution in case of failure.

The final theorem we are aiming to prove about program prog, given
a user-given relation T ⊆ u8∗ × u8∗, is:

Theorem 3.3.1 (template). For any start state si after loading program
prog, every state reachable from si can reach some other state s f which is
an exit state (exits(s f , c)), and furthermore if c = 0 then T(i, o) holds, where
i is the input consumed between si and s f and o is the output at s f . In
symbols:

∀si ∈ init(prog). ∀sm. si ⇝
∗ sm →

∃s f , c. sm ⇝∗ s f ∧ exits(s f , c) ∧
(c = 0→ T(in(s f), out(s f)))

The ∀∃ quantification here ensures that there are no reachable stuck
states, because if si ⇝∗ sm and sm was a stuck state then s f = sm and
there would not be any choice of c such that exits(s f , c). It does not im-
ply strong termination however, or any uniform bound on the number
of steps of evaluation. (For example, the finite state machine with two
states

↶
s → f where f is final is not strongly terminating because one

can loop s forever, but every path can be extended to end at f .) In the
absence of non-determinism this does imply termination.30

We want to develop a program logic to assist in proving this theo-
rem about the program that was given to us by the user. First, fix prog
and R as global parameters of the logic.31 We define:

• s is terminal, or terminalT(s), if ∃c. exits(s, c)∧ (c = 0→ R(in(s), out(s)))

• s can finish, or canFinishT(s), if ∃s′. s⇝∗ s′ ∧ terminalT(s′)

• s is valid, or validT(s), if ∀s′. s⇝∗ s′ → canFinishT(s′)

Then the target theorem asserts that ∀s. s ∈ init(prog) → validT(s): all
initial states are valid. We prove this “from back to front”: we first
establish that if we reach the last line of the program then we are in a
valid state, then prove that the second to last line is also valid, and so
on until we reach the beginning of the program.

We want to get away from talking about machine states directly, so
we introduce a satisfaction predicate s ⊨ P where P is a separating
proposition. More precisely:

• A place is an abstraction of a “location” in the abstract machine

30 This is likely not as strong a theorem
as it could be. A uniform bound on
runtime seems possible and would
close the strong termination loophole.
31 It may seem odd to fix prog, the final
linked ELF file corresponding to the
input program, since we will proceed
by structural induction on the input
program, and while we are constructing
the proof we don’t know yet what the
program will look like concretely. But
this kind of forward reference is fine
as long as we eventually put in the
real executable here; this is similar to
leaving a metavariable in a proof and
resolving it at the end.

metamath c 97

state. The set of places is architecture-dependent, but for the x86

implementation, the places are:

– The input

– The output

– The exception flags

– The instruction pointer

– The flags

– One place per general-purpose register

– One place per memory byte

• If p is a place, then s(p) gets the value of a place out of the ma-
chine state s. (For example, the value of the register, or the byte of
memory.)

• A heap is a finite partial function on places.

• If h is a heap, then s ⊨ h means that for all (p, x) ∈ h, s(p) = x.

• If h, h′ are heaps, then h ⊥ h′ means dom(h) ∩ dom(h′) = ∅.

• A separating proposition is a set of heaps.

• If P is a separating proposition, then s ⊨ P means that there exists
h ∈ P such that s ⊨ h.

• We define ok(P) to mean that ∀s. s ⊨ P→ valid(s).

This is a fairly standard setup for defining a separation logic.32 We
can use this to construct some separating propositions: for example
p 7→ v can be defined as {{(p, v)}} (the singleton of a singleton heap
mapping p to v), and

P ∗Q := {h ∪ h′ | h ∈ P ∧ h′ ∈ Q ∧ h ⊥ h′}.

ok(P) acts something like a one-sided version of a Hoare triple
{P} C {Q}. We can define a two-sided version as

{P} · {Q} := ∀R. ok(Q ∗ R)→ ok(P ∗ R)

but we don’t really have an equivalent for C – the whole program is in
the machine state already so we just need to step the state. (Note that
we have built the frame rule into this definition.)

The form of {P} · {Q} leads to a natural generalization:

{P} · {Q1, . . . , Qn} := ∀R. ok(Q1 ∗ R) ∧ · · · ∧ ok(Qn ∗ R)→ ok(P ∗ R)

This is useful for programs that have multiple exit points. The example
programs in section 3.3.1 did not have any non-local control flow, but
MMC notably has return, break, continue, and l() for jumping to a
label l(). In general, when we are working through a program we

32 There are much more sophisticated
setups for separation logic, like Iris. A
result of this simplicity is that certain
kinds of higher order reasoning are
not currently possible in MMC, but it
is possible to change some parts of this
foundational setup if more use cases
arise.

Ralf Jung, Robbert Krebbers, Jacques-
Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic. Journal of Functional Programming,
28, 2018

98 metamath zero: from logic, to proof assistant, to verified compiler

will have some set of labels and exit points we can jump to, and in
the proof we will have ok(Q) hypotheses for each of these exit points,
either because they come later in the program (so we have already
proven that they are ok since we work back-to-front), or because we
have them as an inductive hypothesis (for a back edge in a loop, where
the variant provides the proof that the inductive hypothesis applies).

In the next chapter, we will look into how compilation of MMC

programs actually works. We will connect it back to separation logic
in section 4.4.

4

The Metamath C Compiler

A compiler is a program that receives (generally) text input in some
language with an execution semantics and produces machine code
with the same execution behavior. The Metamath C compiler (MMCC)
is similar, in that it takes code written in the MMC language (see Chap-
ter 3) and produces executable (Intel x86) machine code, but unlike
most compilers this is just one of the two outputs of the compiler. The
other output is a proof that the machine code just generated satisfies
a specification, which was written as part of the MMC input code. We
call this a proof-producing compiler1 because the generated proof verifies
the behavior of the compiled code.

Architecturally, MMCC is fairly similar to a regular compiler. It
consists of a sequence of passes over the code, transforming it into dif-
ferent forms suitable for different kinds of analysis, before producing
machine code. The novelty is that most of the intermediate languages
have a strong type system and the compiler preserves typing informa-
tion through the translations.2

The compiler passes are summarized below, roughly in the order
they are performed: from high level to low level.

• The first few steps are actually part of the MM1 language:

– The MM1 file is parsed into an AST.

– The s-expressions inside do blocks are further parsed into the
MM1 metaprogramming language.

– The MM1 code is executed, resulting in a call to the built-in
(mmc-compiler) function on an s-expression literal containing the
actual MMC code.

This is because the MMC compiler is presently presented as a meta-
program which can be executed in the course of elaborating an MM1

file.3

• The lisp datum is parsed into an AST.

1 There is a subtle distinction that it
is not a verified compiler: the overall
operation of the compiler itself is not
proved correct. See section 3.1 for a
discussion about this design decision.

2 Even this is not unheard of in produc-
tion compilers: Haskell GHC uses a
strongly typed intermediate language
with a static typechecker, and this is
reportedly useful for unit-testing op-
timization passes. MMC simply takes
this to the logical extreme by using
a very strong type system capable
of expressing functional correctness
properties.
3 This means that it gets some of the
same niceties as regular use of MM1

like live diagnostics from the language
server, but it means that MMC is writ-
ten in lisp syntax instead of the C-like
syntax presented in this dissertation.
However this difference is only skin-
deep; all the semantics are the same as
presented here.

One nontrivial feature this arrange-
ment provides is the ability to use MM1

as a macro language over MMC. This
is difficult to mimic if MMC is parsed
directly from text.

100 metamath zero: from logic, to proof assistant, to verified compiler

• The AST is desugared to a simpler AST. In this pass (which occurs
concurrently with the previous step):

– names are resolved;
– label groups are identified;
– label and loop label references are identified;
– and some syntax sugar like match expressions and chained in-

equalities are reduced to primitives.

• The AST is typechecked and lowered to an intermediate language
called HIR (high-level intermediate representation). This pass is
responsible for the majority of user facing errors.

– Type inference is performed.
– Definitional reduction / type normalization is performed where

necessary to make types match.
– If the user uses an expression hole “_” to query the current type

context, the error message is reported here.
– If necessary, MM1 is called to resolve embedded proofs inside

entail.

The elaborated HIR is structurally similar to the AST but includes
full type information and can be typechecked.

• The HIR is lowered to MIR (mid-level intermediate representation),
which is no longer AST-structured but consists of a graph of “basic
blocks” connected by jumps (also known as a control-flow graph or
CFG).

– Each basic block consists of a sequence of elementary operations
that declare fresh variables (also known as let-normal form)

– Variables are only declared once and mutation creates new names,
also known as static-single assignment (SSA) form (with block
parameters)

– Basic blocks are connected into a tree reflecting the original AST
structure4

– All mutation is turned into explicit parameter passing

• The MIR is the most versatile IR for doing program analysis, and so
a number of optimizations are performed at this level:

– Reachability analysis is performed to detect dead blocks. A block
is reachable if it is accessible from the entry block by forward
edges, and also there exists some path from the block to the
return or a side-effecting procedure or assert.5

– Ghost analysis is performed to mark anything as ghost unless it
must be computed to produce (a computationally relevant part
of) the return or a side-effecting procedure or assert.

* This pass is also responsible for the if → by_contra transfor-
mation mentioned in section 3.2.11.

4 This is unusual for CFG represen-
tation; normally this is represented
implicitly using the “dominator tree”
instead. It helps here to have it be an
explicit part of the IR because this gives
us a place to put the variant anno-
tations from the source and gives the
structure of the correctness proof.

5 In particular, an unguarded infinite
loop is illegal because the entry is
unreachable by this definition.

the metamath c compiler 101

– Legalization is a pass to remove infinite intermediates. For ex-
ample:

proc example(x: u64, y: u64) {

let z: nat := x + y + y;

return z as u64;

}

Here we cannot eliminate z as ghost because it is actually used
to compute the return, so we work backwards from the as u64 to
work out a different way to compute the result without using z:

proc example(x: u64, y: u64) {

let z: nat := x + y + y;

let z64: u64 := x +_64 y +_64 y;

return z64;

}

Here x +_64 y is addition modulo 264, an operation not directly
accessible in the source language. This will eventually be lowered
to an ADD instruction in the hardware.

– Because the previous step can produce dead values like z, we run
ghost analysis again to mark z as ghost.

All of the above steps take place on each function as soon as it is added
to the compiler state. Once we have the main() function we can do “link
time analyses” that require all functions to be known:

• The collection pass determines which functions are accessible from
main(), a global version of the reachability analysis. It also deter-
mines which type specializations of polymorphic functions should
be instantiated,6 as well as the constants that need to be placed in
the read-only section of the binary and their addresses.

• The allocation pass determines the abstract layout of the stack frame
for a function:

– Which variables need to exist simultaneously and so must have
disjoint storage

– Which variables should have overlapped storage because they are
SSA copies of the same source variable after “mutation”

– Which variables are zero-sized and do not need physical storage

Some more user-facing errors come from this step, if a variable that
could not be eliminated up to this point turns out to be infinite-
sized.

• The monomorphized MIR is lowered to another IR, called virtual-
register code (VCode).

– This IR exists primarily to be the input to register allocation.

– It is architecture-specific, so the primitive operations here look
like x86 instructions, except that they use an infinite pool of “vir-

6
MMC monomorphizes generic func-

tions similarly to C++ or Rust. That is,
a function with a type argument has
copies made for every type at which
it is used, so the collector is used to
determine how many copies need to be
made.

102 metamath zero: from logic, to proof assistant, to verified compiler

tual registers” instead of real registers

– Even though MIR instructions are relatively simple, some need
to be broken down into many operations, like array construction
or accessing a nested place expression like arr[1][2].f <- val;

– Block ordering is also optimized here: this attempts to make as
many jumps into fallthroughs as possible by placing the jump
target immediately after the jump.

• The code undergoes register allocation, which is the process of as-
signing concrete registers to the virtual registers, respecting which
values need to be accessed later and “spilling” registers to the stack
when there are not enough physical registers.7

• Applying the results of register allocation to VCode yields physical-
register code (PCode). This is equivalent to assembly code, and we
could pass this to an assembler at this point to get real machine
code.

• Branch displacement optimization (BDO) is done at this point. This
determines which jump instructions can use the short form that
can only jump 128 bytes (which itself can cause more jumps to be
shortened).

• The instructions are assembled into machine code (a sequence of
bytes).

– There are some minor optimizations performed in this process,
like replacing MOV reg, 0 with XOR reg, reg (which is smaller
and faster).

• The functions are ordered and padded, the constants are laid out
and the ELF header is added to produce the completed ELF file,
ready for execution.

This is where a regular compiler would stop, and it is possible to run
MMCC as a regular compiler to produce this output. But as we men-
tioned at the start, this is only the first of two outputs of the verifying
compiler, and we have more work to do to get a proof out.

There are two important IRs for the proof generation stage: MIR
and PCode.

• MIR has a good type system, a fairly lossless image of the user’s
proof annotations in the source language. In particular looking at
this level means we do not need to verify anything about the higher
level languages this was translated from, nor the optimizations that
were performed on MIR.

• PCode has a defined deterministic mapping to the actual bytes that
were emitted: we can give a precise accounting for everything that
appears in the file. However it is not well suited to a strong type

7
MMC uses an external register alloca-

tion library, because this is the only part
of the compilation process that does
not need to be proof preserving – the
resulting register assignment can be
checked for correctness after the fact.

the metamath c compiler 103

system because it is tied up in details of the Intel x86 ISA.

• During the MIR→ VCode translation, we kept a record of the map-
ping from one to the other, and we can compose that with the data
coming from the register allocator to get a “justification” for every
instruction in PCode relative to the source MIR.

So our strategy for producing the proof proceeds through those two
IRs:

• For each function, we construct the assembly (a logical rendering of
the PCode for the function) and prove that this assembly assembles
to the subsequence of bytes that appeared in the final binary.

• (∗) For each function, we prove that it satisfies the MIR version
of the type signature, by using the MIR for the broad strokes of
the proof and the MIR → PCode map to show how the individual
assembly lines combine to produce each MIR instruction.

• Therefore, looking at the type signature of main(): R, we conclude
that if main() is run, then R holds afterwards, where R is the final
property we wish to establish.

Currently, the MMC compiler performs all passes mentioned so far
except for the MIR proof stage, marked (∗), which is incomplete. In
the following sections we will go into more detail on some of these
intermediate languages and passes, and the proof strategy for (∗).

4.1 MIR in depth

The first few intermediate languages are not particularly different from
the input source. Typechecking occurs at the source level because it
yields better error messages. But once most of the typechecking is
done, the program is translated into basic block form in the Mid-level
Intermediate Representation (MIR).

A basic block is a sequence of statements ending in a terminator. The
characteristic property of a basic block is that you cannot jump into
the middle of a block: all jumps go from the end of one block to the
beginning of another.

MIR is also an interesting stage because it is the lowest level that
actually has full proof information, translated from the higher levels.
The levels below this one only have partial proof information and refer
back to the MIR for the rest of the proof.

The syntax of MIR is as follows:

104 metamath zero: from logic, to proof assistant, to verified compiler

prog ::= λ ctx → ctx′. tail program

block ::= λ ctx. tail basic block

tail ::= term | stmt; tail block tail expression

l ::= return | ⟨identifier⟩ block label

v ::= ⟨identifier⟩ variable name

n ::= ⟨integer⟩ integer constant

pr ::= . . . MM0 proof

ctx ::= arg block context

arg ::= ghost? v : τ := e? variable

τ, e ::= . . . types, pure expressions

p ::= v | p.i | p[v, h] | p[v..+v′, h] | ∗v place expressions

o ::= move p | ref p | copy p | c operands

c ::= () | true | false | n | uninit | sizeof(τ) | proof {pr} constants

stmt ::= let (v : τ := e?) := rval; let-declaration

| p : τ ← o; mutating assignment

| labels l := block; label group declaration

| pop_labels l; exit label group scope

| join l := block; declare forward jump

rval ::= o use operand

| unop(o) | binop(o, o′) apply unary/binary op.

| pun(pk, p) | cast(ck, o : τ) type conversion

| ⟨o⟩ | [o] construct tuple / array

| ghost(o) force value as ghost

| &p address of place

| typeof(o) take variable type

term ::= l(v := o) jump to block

| if o {arg. tail} else {arg′. tail′} branch

| assert(o); {arg. tail} assert

| unreachable(o) unreachable block

| f (τ, o); {arg. tail} function call

| exit(o) exit program

This is slightly simplified but still captures essentially everything in
the MMC language. One interesting aspect of this grammar compared
to traditional presentations of basic block form is that the blocks are
not all declared at the top level and able to call each other freely.8

8 For performance reasons, all the
blocks are stored at the top level any-
way, but the scoping constraints act
as invariants on which blocks can call
which others.

the metamath c compiler 105

To illustrate the scoping constraints, let us consider a very basic
typing rule which ensures that labels must be well scoped:

Program and block scoping ⊢ prog scoped l ⊢ block scoped

return ⊢ tail scoped

⊢ (λ ctx → ctx′. tail) scoped

l ⊢ tail scoped

l ⊢ (λ ctx′. tail) scoped

Statement / terminator scoping l ⊢ tail scoped

l ⊢ tail scoped

l ⊢ (let . . . ; tail) scoped

l ⊢ tail scoped

l ⊢ (p : τ ← o; tail) scoped

∀i. l, l′ ⊢ tail′i scoped l, l′ ⊢ tail scoped

l ⊢ (labels l′ := λ ctx′. tail′; tail) scoped

l ⊢ tail scoped

l, l′ ⊢ (pop_labels l′; tail) scoped

l ⊢ tail′ scoped l, l′ ⊢ tail scoped

l ⊢ (join l′ := (λ ctx′. tail′); tail) scoped

Because we are only tracking the list of labels in scope, let and as-
signment have no effect, but the latter three instructions (which are
all ghost instructions, i.e. machine no-ops) do have an effect on the
context.

• labels pushes a group of labels to the context, which are available
both in the proof that the label blocks themselves are well scoped,
as well as the remainder of the block.

• pop_labels undoes the effect of labels, removing a set of labels from
the scope.9

• join is a forward jump declaration. We are not allowed to use the
new label inside the label itself, but we can use it in the remainder
of the block. This is appropriate to use for the merge point of an if
statement, where the rest of the program after the if block goes in
tail′, and tail has a branch followed by two jumps to l′.

Scoping for terminators checks that the labels used are in the con-
text:

l′ ∈ l

l ⊢ l′(v := o) scoped

l ⊢ tail scoped l ⊢ tail′ scoped

l ⊢ (if o {arg. tail} else {arg′. tail′}) scoped

l ⊢ tail scoped

l ⊢ (assert(o); {arg. tail}) scoped
l ⊢ tail scoped

l ⊢ (f (τ, o); {arg. tail}) scoped

9 This is used because label scopes are
supposed to follow lexical structure like
the block of a loop, but the definition
here is flow-based, which can some-
times lead to labels sticking around
after they should not be accessible. For
example the code after a while loop is
dominated by the loop, but we should
not still be able to jump back to the
start of the loop after exiting it.

106 metamath zero: from logic, to proof assistant, to verified compiler

l ⊢ unreachable(o) scoped l ⊢ exit(o) scoped

The full typing rules complicate this by having a context of the form
ctx, l : ctx ⊢ That is, we have both a local context (which is aug-
mented every time we pass a let statement or a terminator like if or
assert that adds the assumption about the relevant expression being
true or false to the context), as well as a context in each label (which
is formed from the context at the point the block was introduced, plus
the declared context in the block). See Appendix B for a more complete
display of the typing rules.

This IR strikes a balance between being logically coherent and also
efficient for compiler optimizations and lowering to machine code. In
the next section, we will talk about how to actually lower these con-
structs to primitive logical theorems.

4.2 How proof generation works

In any automated proof, there is usually a clear delineation between
two different kinds of proof work:

1. The lemmas, which are manually proved generic theorems, possibly
involving specialized definitions or written in a very specific way to
fit the expectations of the automation.

2. The tactic, which is a metaprogram that decides “at runtime,” hav-
ing seen the particular instance of interest, how to combine the lem-
mas in order to prove the theorem.

For example, suppose we wish to implement an evaluator for addi-
tion on unary natural numbers.

1. The lemmas are:

theorem add0 (a: nat): $ a + 0 = a $;

theorem addS (a b c: nat): $ a + b = c $ > $ a + S b = S c $;

2. The tactic is a program with the following (MMC) pseudocode:10

proc eval_add(a: nat, b: nat): c: nat, proof(a + b = c) {

if b = 0 {

let pr: proof(a + 0 = a) := add0(a);

return a, pr;

} else {

let b := b - 1;

let c, (h: proof(a + b = c)) := eval_add(a, b);

let pr: proof(a + S(b) = S(c)) := addS(a, b, c, h);

return S(c), pr;

}

}

10 Note that the proof(a + b = c)
argument is not ghost. We are not
simply trying to return a value c for
which a + b = c, we are actually
constructing a tree-structured proof
object witnessing a + b = c as part of
the program output.

the metamath c compiler 107

The characteristics of this scheme are:

• The lemmas are written in a particular form: add0 is of the form
a + b = c, and addS both takes and produces lemmas of this form.11

• The tactic works by structural induction on b, following essentially
the same path as a normal recursive program computing a + b; we
output exactly one lemma for each “decision” made in the compu-
tation.

The really interesting consequence of the scheme is that there is
only a linear overhead over just running the corresponding functional
program:

data Nat = Z | S Nat

eval_add :: Nat -> Nat -> Nat

eval_add a Z = a

eval_add a (S b) =

let c = eval_add a b in

S c

Thus, as long as we can craft a functional program to calculate the de-
sired expression, we can also construct a proof object linear in the size
of the computation to lead a completely generic MM0 verifier through
the same computation.12

4.3 The assembly proof

The proof will be manipulating syntactic objects for doing calculation,
so we need some preliminaries for strings and numbers:

h : hex ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 hexadecimal digits

| 8 | 9 | a | b | c | d | e | f
c : char ::= h1 h2 bytes

s : string ::= · | c | s1 s2 strings

n, i, j : nat ::= h | n h hexadecimal numbers

The terms of sort nat are defined in the obvious way, with n h being
defined as 16n + h, so that ab0 denotes the value 0xab0 or 2736. Arith-
metic is defined over hexadecimal numbers in this representation.

4.3.1 Global assembly

An ELF file consists of a header which is always the same, followed
by a number of procedure declarations.13 The purpose of the global

11 The normal way to state addS would
be a + S b = S (a + b), and we
could still do the job by applying
transitivity and congruence of equality
in the tactic. However, considering that
lemmas are O(1) proof work while
tactics represent O(n) computation, we
are incentivised to move as much as
possible out of the tactic and into the
lemmas to keep the constant factor low.

12 The ability to construct such a proof
object is not specific to MM0, of course;
just about any proof language has the
same property. However, the linearity of
the proof depends heavily on subterm
sharing. For example, the proof objects
generated by eval_add reuse a and the
subterms of b many times.

13 Constants that have been placed in
the read-only section should also be in
this definition; this is future work.

108 metamath zero: from logic, to proof assistant, to verified compiler

assembly theorem is to parse the part of the string after the header
into these pieces.

A ::= A1; A2 sequential composition

| proc n {A} procedure declaration

The judgment s @ i..j ⇒ A asm asserts that assembly A can be
assembled into the string s (or s can be disassembled to A depending
on perspective), at locations i..j (meaning that i is the address of the
beginning of the string and j is the end of the string).

Global assembly s @ i..j⇒ A asm

asm-seq

s1 @ n0..n1 ⇒ A1 asm s2 @ n1..n2 ⇒ A2 asm

s1 s2 @ n0..n2 ⇒ A1; A2 asm

asm-proc

s @ 0..n⇒ A lasm i + n = j

s @ i..j⇒ proc i {A} asm

asm-pad

s @ i..j⇒ proc i {A} asm len(s′) = n j + n = j′

s s′ @ i..j′ ⇒ proc i {A} asm

The asm-pad theorem allows us to add additional garbage at the end
of any procedure declaration without tracking it in the assembly. This
is used for padding purposes, because the compiler will insert padding
between procedure declarations so that they start on a 16-byte aligned
address.

We use a trick here to avoid repeated bounds checks. Assembly
requires everything to fit within 264, which is an extremely generous
head-room but is still required for these lemmas to be correct. There is
nothing about the lemmas just stated that would prevent their appli-
cation to assemble more than 264 procedures or very large procedures;
it is even possible to do this with a small proof term by utilizing def-
initions and subterm sharing. So s @ i..j ⇒ A asm is defined such
that it is trivially satisfied when j ≥ 264, and therefore we can assume
during the main assembly proof that all numbers in sight are suitably
bounded.

When we are done assembling all the procedures, we do exactly one
bounds check on the final number we ended up with, and then we un-
pack the proof to obtain facts asserting that each individual procedure
is where we put it.

The global assembly extraction judgment G ⊢ A asm says that A is

the metamath c compiler 109

assembled in the current global context G, defined as follows:

G ∈ GCtx ::= {content := s, filesz := i, memsz := j, result := R}

where G.content : string represents the body of the file (everything af-
ter the ELF header), and G.filesz : u64 and G.memsz : u64 represent the
two fields from the ELF header that vary between compiler-produced
executables. G.result ⊆ u8∗ × u8∗ is the final property we wish to es-
tablish, the T(i, o) function from theorem 3.3.1.

Global assembly extraction G ⊢ A asm

asmd-i

G.content @ 0 ..G.filesz⇒ A asm

G.filesz ≤ G.memsz 400078+ G.memsz = n n < 264

G ⊢ A asm

asmd-left

G ⊢ A1; A2 asm

G ⊢ A1 asm

asmd-right

G ⊢ A1; A2 asm

G ⊢ A2 asm

The value 0x400078 appearing in asmd-i is the hard-coded entry point
of the program.14 By using these theorems, we obtain a proof of
G ⊢ proc p {A} asm for each procedure in the program, which is the
form we need for section 4.4.

4.3.2 Local assembly

We have to fill in the details on A and the lasm judgment from the
previous section. Inside a procedure, we use local addressing: the
s @ p, i..j ⇒ A lasm judgment is similar to s @ i..j ⇒ A asm but
asserts that the string is assembled at p + i .. p + j instead, and A may
also depend on p and i separately.15 Local assembly sequences have a
similar definition to global assembly:

A ::= A1; A2 sequential composition

| A @ i start a basic block

| entry(p, A) start the entry block

| I instructions

Local assembly s @ p, i..j⇒ A lasm

lasm-seq

s1 @ p, n0..n1 ⇒ A1 lasm s2 @ p, n1..n2 ⇒ A2 lasm

s1 s2 @ p, n0..n2 ⇒ A1; A2 lasm

14 The ELF format lets you specify the
entry point of the program, and the
way we construct it the entry point
always comes immediately after the
header (which is 0x78 bytes). So the
whole ELF file is being mapped starting
at 0x400000 (we can’t start too close
to zero, and highly aligned pages are
preferable for the loader).

15 This is a slight simplification: in
the real version the judgment also
keeps track of whether s is empty or
nonempty to avoid generating useless
·+ s expressions.

110 metamath zero: from logic, to proof assistant, to verified compiler

lasm-at

s @ p, i..j⇒ A lasm

s @ p, i..j⇒ A @ i lasm

lasm-entry

s @ p, 0..j⇒ A lasm

s @ p, 0..j⇒ entry(p, A) lasm

lasm-inst

s @ p, j⇒ I inst len(s) = n i + n = j

s @ p, i..j⇒ I lasm

Local assembly extraction G ⊢ A lasm

lasmd-i

G ⊢ proc n {A} asm
G ⊢ A lasm

lasmd-left

G ⊢ A1; A2 lasm

G ⊢ A1 lasm

lasmd-right

G ⊢ A1; A2 lasm

G ⊢ A2 lasm

A @ i is used at the start of each basic block to record the current
value of the local address so that it can be targeted by jumps inside
the function, and entry(p, A) does the same thing but with the global
address, to record the address of the entry block so that it can be
targeted by call instructions in other functions.

The body of each block is also a local assembly sequence A, so that
we can reuse lasm-seq for concatenating instructions, and we are left
only with assembling individual instructions.

4.3.3 Assembling instructions

Assembling x86 instructions involves many lemmas because each lem-
ma corresponds to one kind of instruction and x86 is a large and com-
plicated architecture. We will show just a few of the rules.

I ::= binop.sz dst src | call f | jump tgt | ret | . . .

binop ::= add | xor | . . .

dst, src ::= reg | M[si · base + o f f] | imm32 n | imm64 n

Instruction parse (REX byte) s @ p, ip⇒ I inst

inst-rex

s @ p, ip, r ⇒ I inst

(4 r) s @ p, ip⇒ I inst

inst-no-rex

s @ p, ip, · ⇒ I inst

s @ p, ip⇒ I inst

This handles the parsing of the REX byte, which can either be 0x4r or
omitted and affects the meaning of the rest of the instruction.

Instruction parse (core) s @ p, ip, rex? ⇒ I inst

inst-ret

c3 @ p, ip, rex? ⇒ ret inst

the metamath c compiler 111

This is the core judgment. Some instructions like inst-ret have a
trivial parse (they are indicated by the byte c3 and there are no ar-
guments), but most instructions involve several subroutines, like this
one:

inst-binop-imm

split1,3(y) = v, 0 opSizeW(rex?, v) = sz
parseModRM(rex?, s)⇒ opc, reg dst, s′

parseImm(sz, s′)⇒ src parseBinop(opc, sz, dst, imm32 src)⇒ I

(8 y) s @ p, ip, rex? ⇒ I inst

This describes the parsing of a binary operation with an immediate
argument. For example, add rax, 1 would go through this lemma.
The way this lemma is “executed” by the tactic is as follows:

• We are given the string s and p, ip, rex? as inputs, and want to pro-
duce I as output. (We also have I itself stored as a PCode instruc-
tion, which is useful to influence the choice of I when multiple
instructions can be read from the same bytes.)

• We match s to the form (8 y) s to get y and the substring s. (In other
words, this rule applies when the opcode byte is 0x8y for some hex
digit y.)

• Call split1,3(y) = v, z and assert that z = 0. This takes y which is a
hex digit and splits it into digits of size 1 and 3 bits respectively. For
example, split1,3(d) = 1, 5 because d is 1101 in binary so the high bit
is 1 and the low three bits are 101 = 5. (This kind of bit packing
and unpacking is common in the assembler because many values
are bit-packed into the instruction bytes.)

• Call opSizeW(rex?, v) = sz. This is parsing the size of the instruction
operands from the v argument and the REX byte.

• Call parseModRM(rex?, s) to get opc, dst′, s′ and assert that dst′ =
reg dst. This is parsing the next byte after the opcode byte, known
as the Mod/RM byte in the Intel specification. It returns two fields,
where in this case the first field is opc which encodes the binop,
and dst must be a register for this form of the instruction (we are
encoding a binary operation between a destination register and an
immediate). The string s′ is the remainder of the instruction after
the Mod/RM byte and possible continuation bytes are parsed.

• Call parseImm(sz, s′) to get src. This just reads all the remaining
bytes in the instruction into the number src.

• Call parseBinop(opc.sz dst (imm32 src)) to get the final instruction I.
We will show this judgment below; this is mainly just assembling
the binop.

Most instructions go along similar lines as this one.

112 metamath zero: from logic, to proof assistant, to verified compiler

binop-binop

parseBinop(binop.sz dst, src)⇒ binop.sz dst src

binop-clear-32

parseBinop(xor.32 dst dst)⇒ imm.32 dst 0

binop-clear-64

parseBinop(xor.32 dst dst)⇒ imm.64 dst 0

This is a nondeterministic judgment which allows interpreting the
bytes that normally would encode xor.32 dst dst as either a 32 or 64

bit immediate move of the value 0 into a register. Read in reverse, it
means that if the compiler has an imm.64 dst 0 it wants to encode, it
produces the encoding of xor.32 dst dst instead and hints to the assem-
bler tactic that it wants it to be interpreted as imm.64 dst 0.

The instructions for jumping and calling are interesting for making
use of the address parameters:

inst-call

p + ip = a tgt −Z a = imm parseImm32(s)⇒ imm

e8 s @ p, ip, rex? ⇒ call tgt inst

• First, we compute p + ip = a

• Call parseImm32(s) to get imm

• We compute imm + a = tgt but prove tgt −Z a = imm (note that
imm can be positive or negative).

• The assembled instruction is call tgt.

The semantics of the call instruction are that it offsets the current value
of the instruction pointer by imm, so since the current instruction is at
p + ip and the absolute address of the target function is tgt, we want
tgt− a to be stored in the instruction.

inst-jump-8

tgt −Z ip = imm parseImm8(s)⇒ imm

eb s @ p, ip, rex? ⇒ jump tgt inst

jump is similar to call except that tgt is now a procedure-local address,
the address of some other basic block in the function, so we do not
need to involve p as both ip and tgt are local and their difference is
imm which must be a signed 8 bit number. (There is another variant
of this instruction for 32 bit offsets.)

We can also assemble ghost instructions using this approach. For
example, the compiler will produce “fallthrough” terminators on basic
blocks that jump to the immediately following block, which does not
require any code to happen explicitly. But for uniformity of reasoning

the metamath c compiler 113

it is convenient to put a jump instruction there anyway, and this is
done by adding another rule to assemble an instruction to the empty
string:

lasm-fallthrough

· @ p, ip..ip⇒ jump ip lasm

When all is said and done, what we get out of this part of the proof
is a theorem of the form G ⊢ proc i {A} asm for each procedure,
proved in the order these functions appear in the assembly. In the next
section we will discuss the second and much larger part of the proof,
where we take these assembly proofs and prove Hoare triples for each
function (in the call graph dependency order).

4.4 The correctness proof

Warning: This is future work. Not all aspects of this part of the project are
completely worked out.

The correctness proof is essentially the output of a proof-producing
MIR typechecker, so to understand it we need to know the core con-
cepts of MIR, starting with the contexts.

4.4.1 The type context

There are no less than five different kinds of contexts that play a role
in the main part of the proof. The first three are “read-only” state,
corresponding to the Γ in the Γ, δ ⊢ e : τ ⊣ δ′ type judgment we
mentioned in section 3.3.3.

• G ∈ GCtx: the global context. This contains information which is
global to the entire executable, and every theorem depends on it.

– G.content : u8∗ – the ELF file data after the header

– G.filesz : u64 – the size of the ELF file

– G.memsz : u64 – the “size of the file in memory.” This is generally
larger than G.filesz, with the difference between the two being the
number of bytes of read-write zeroed data for global variables.

– G.result ⊆ u8∗ × u8∗ – the final property we wish to establish, the
T(i, o) function from theorem 3.3.1.

• P ∈ PCtx: The procedure context. PCtx extends GCtx with addi-
tional fields which are global to a specific procedure.

– P .ret : Return – the return ABI, i.e. the number and types of
return values and what registers they should be put in

114 metamath zero: from logic, to proof assistant, to verified compiler

– P .epi : Epilogue – the epilogue sequence that is required to com-
pensate for the prologue at the beginning of the function

– P .se : bool – true if this function is permitted to perform side-
effects

• B ∈ BCtx: The block context. BCtx extends PCtx with additional
fields which are global to a specific basic block.

– B.labs : LabelGroup∗ – the list of label groups that are legal to
jump to at this point. This is used for back edges which corre-
spond to while or label loops in the source code.

The δ in Γ, δ ⊢ e : τ ⊣ δ′ is the flow-sensitive type context T ∈ TCtx,
which changes between individual instructions and tracks the current
values of variables. It consists of two parts, T ::= (V ,M), defined as:

• V ∈ VCtx: the variable context, which contains the information
about which variables exist and their types and values. This closely
resembles the type context from the user level view of the proof.

• M ∈ MCtx: the machine context, which keeps track of the val-
ues currently in specific registers or stack slots in the current stack
frame. This is not user-visible, and primarily consists of information
derived from register allocation. (So if the register allocator library
was buggy, we would notice when working through the proof here.)

The variable context V has the structure:

V ::= V1 ∗V2 | vi : τ | τ | ·
V ::= {tree := V, size := n}

That is, there is a tree of ∗ applications (associated in an unspecified
way) and at the leaves we have variable declarations vi : τ, as well as
anonymous declarations τ for simple (separating) propositional types.
The V .size field tracks the number of declared variables, and the vi

declarations in the tree all have distinct indices.

The machine context similarly has a tree structure:

M ::= (M1, M2) | ·
| regi 7→ e | regi 7→ − | S[i..j] 7→ e | S[i..j] 7→ −

This tracks the registers that are in use: they may be either storing an
expression, or they may be “clobbered,” i.e. they contain an arbitrary
value but are available for use. Registers not listed in the context must
not be touched. Similarly, stack slots can either be storing a value or
they may be uninitialized.

the metamath c compiler 115

4.4.2 Block structure

As mentioned, the proof structure is driven by the MIR representation
of the program, which uses a CFG (control-flow graph) consisting of
basic blocks which call each other. In the proof, this corresponds to
a proof structure with lemmas proving B ⊢ block(T) @ n for each
possible jump target n.

Block correctness B ⊢ block(T) @ n

block-i

B ⊢ A @ n lasm

B ⊢ {T } A {⊥}
B ⊢ block(T ′) @ n

block-weak

B ⊢ block(T) @ n
B ⊢ {T } · {T ′}
B ⊢ block(T ′) @ n

The main rule is the first one, which uses the proof of G ⊢ A lasm

from the previous section to get the assembly of a block and start
proving it using the B ⊢ {T } A {T ′} code correctness judgment. Here
⊥ ∈ TCtx is the type context defined as (false, ·), an impossible state.
This expresses the fact that every basic block ends in a “terminator”
which performs some kind of jump, so we do not fall off the end of
the block.16

The block-weak rule allows us to “weaken” the context using the
idiom B ⊢ {T } · {T ′}, again using the B ⊢ {T } A {T ′} judgment
but with an empty instruction sequence. This holds if T ′ is logically
entailed by T , and it is useful when merging control flow into a block
from a type context that does not exactly match.

Code correctness B ⊢ {T } A {T ′}

code-0

B ⊢ {⊥} A {⊥}
code-id

B ⊢ {T } · {T }

code-seq

B ⊢ {T0} A1 {T1}
B ⊢ {T1} A2 {T2}

B ⊢ {T0} (A1; A2) {T2}

This is the main judgment for proving properties of code fragments,
and it has the general structure of a Hoare triple so we borrow the
notation, although one should keep in mind that T is not literally a
separating proposition, it is a TCtx (which encodes a separating propo-
sition). Also A is not code at the source level, it is a sequence of as-
sembly instructions.

As an aside, let us break down the actual definition of the predicate
B ⊢ {T } A {T ′}. Recall that these rules like code-0 and code-id are
not true by definition; they are lemmas to be proved about a specific
predicate. The reason we present the lemmas first and foremost is

16 Recall that even if this is a
“fallthrough” block, we still put a
ghost jump tgt instruction at the end,
pointing to the next block.

116 metamath zero: from logic, to proof assistant, to verified compiler

because they are the clauses used by the tactic, and the predicate is
chosen to make the lemmas true and minimize the number of side
conditions required in the lemmas. (For instance, the fact that code-0

has no assumptions implies that B ⊢ {T } A {T ′} does not imply that
B or A is well formed.)

(B ⊢ {T } A {T ′}) :=

∀p x y R. lasmB(A, p, x..y) ∧ okScope(B, p, R) →
okTB(T ′, p + y, R) → okTB(T , p + x, R)

The definitional stack leading to this is somewhat deep so we won’t
peer into every part of this, but it is essentially a more elaborate version
of the definition from section 3.3.4:

{P} · {Q1, . . . , Qn} := ∀R. ok(Q1 ∗ R) ∧ · · · ∧ ok(Qn ∗ R)→ ok(P ∗ R)

The parts of this definition are:

• B is the block context, which relevantly contains the return infor-
mation B.rets and the label groups B.labs.

• A is the local assembly sequence, containing a sequence of instruc-
tions.

• T is the precondition and T ′ is the postcondition type context.

• p is the concrete procedure location, which has been abstracted in
the definition so that explicit references to it are not needed.

• x is the address of the beginning of the assembly code A (relative to
p), and y is the address of the end.

• R is the frame proposition, which ends up conjoined to all the ok

assumptions as with ok(Qi ∗ R) in the simple version.

• lasmB(A, p, x..y) asserts that s := B.content[p + x..p + y] is a string
of bytes which assembles to A @ p, x. (The definition of s ∈ A @ p, x
depends on A, but proving facts about this relation was essentially
the purpose of the (s, p, i..j⇒ A lasm) judgment from section 4.3.1.)

• okTB(T , ip, R) asserts that if the instruction pointer is at ip, then
the state is valid in the sense of section 3.3.4. We will break this
proposition down some more below.

• okScope(B, p, R) asserts that exiting via return is valid, and also ex-
iting via one of the labels in the label groups is valid. Roughly:

okScope(B, p, R) :=

okB(return(B) ∗ R) ∧ ∀l ∈ B.labs. okTB(T , p + l, R),

where return(B) is a separating proposition asserting that the pro-
gram has just returned from the function and values are in memory

the metamath c compiler 117

in accordance with the calling convention B.ret. We will discuss
label groups more in section 4.6.

The proposition okTB(T , ip, R) defines the “main layout” of the
stack frame. It has the following structure:

okTB(T , ip, R) := okB(

TEXT_START 7→ B.content ∗
RIP 7→ TEXT_START+ ip ∗
exception 7→ OK ∗
(∃ f . flags 7→ f) ∗
(∃sp. RSP 7→ sp ∗ stackLayoutB(T , sp)) ∗
T .prop ∗ R)

This says that the code of the executable B.content is loaded in memory
at TEXT_START := 0x400078, the instruction pointer is at the specified
instruction, the exception flag is off (this is used for syscalls and pro-
cessor signals), the flags are clobbered, the stack is set up according to
the stack frame layout specified by T , and any additional separating
propositions in T (the variables) are assumed, and finally the frame
proposition R as before. This is all wrapped in okB(−) which means
that any state satisfying this separating proposition will successfully
(according to B.result) execute to completion.

4.5 Executing statements

Some instructions, like register-register moves, are quite simple and
just copy the expression v:

code-mov-rr

read(T , reg src)⇒ v
write(T , reg dst, v)⇒ T ′

B ⊢ {T } (mov.64 dst src) {T ′}

These instructions are inserted by the register allocator, so we don’t
really analyze them too much, we just update the state as specified and
if the register allocator has no bugs then the expressions we require
will be in the appropriate register when we call read later to retrieve
the value, and if not the proof construction will fail.

A more complex instruction is jcc cond tgt “jump to tgt if condition
flags cond are set” which is used to implement if statements:

code-jcc

insert(T , τ)⇒ T1 insert(T ,¬τ)⇒ T2

flagCond(f , cond)⇒ τ B ⊢ block(T1) @ tgt

B ⊢ {withFlag(f , T)} (jcc cond tgt) {T2}

118 metamath zero: from logic, to proof assistant, to verified compiler

The insert(T , τ) and insert(T ,¬τ) calls construct the extended type
context inside the branches of the if statement. The withFlag(f , T)
contains an assignment of the flags f (overriding the “flags clobbered”
in okTB we saw above), and the immediately prior instruction will be
a cmp or other flag-setting command. flagCond(f , cond) decodes this
into an MMC type τ, which is pushed into the type contexts. If the
condition is true, we jump to B ⊢ block(T1) @ tgt and we should
have previously proved that this block is safe to jump to; otherwise we
continue and reach the postcondition T2.

4.6 Label groups and proof by induction

A label group is a collection of basic blocks which can call each other.
For example, the following MMC program:

proc example() {

let a := 1;

label lab1(x: nat, y: nat, variant x + y) {

lab2(0, variant assert(0 + a < x + y))

}

label lab2(z: nat, variant z + a) {

lab1(1, 2, variant assert(1 + 2 < z + a))

}

if a = 1 {

return;

} else {

lab2(1)

}

}

compiles to the MIR shown in Figure 4.1.

proc example {

entry():

let a := 1;

label_group(lab1, lab2);

if a = 1 { goto iftrue(a); } else { goto iffalse(a); }

lab1(a: nat, x: nat, y: nat, variant x + y):

let h := assert(0 + a < x + y);

goto lab2(a, 0, variant h);

lab2(a: nat, z: nat, variant z + a):

let h := assert(1 + 2 < z + a);

goto lab1(a, 1, 2, variant h);

iftrue(a: nat):

return;

iffalse(a: nat):

goto lab2(a, 1);

}

Figure 4.1: The MIR translation of the
example() function. The main
difference is that if statements must
jump to a new basic block, so there are
two new explicit blocks iftrue and
iffalse, and every block has a: nat
in scope, which translates to a block
parameter. (Technically, there would be
additional lines to evaluate the
subterms 0 + a < x + y and a = 1, since
MIR only has elementary operations.)
See Figure 4.2 for the translation of this
function to logic.

the metamath c compiler 119

1. ok(return) premise

2. ∀a. ok(iftrue(a)) fwd. sim. 1

3. ∀a x y. x + y < n→ ok(lab1(a, x, y)) assumption

4. ∀a z. z + a < n→ ok(lab2(a, z)) assumption

5. x + y = n assumption

6. 0 + a < x + y→ ok(lab2(a, 0)) subst. 4, 5

7. ok(assert(· · ·); lab2(a, 0)) fwd. sim. 6

8. ∀a x y. x + y = n→ ok(lab1(a, x, y)) fwd. sim. 5–7

9. z + a = n assumption

10. 1 + 2 < z + a→ ok(lab1(a, 1, 2)) subst. 3, 9

11. ok(assert(· · ·); lab2(a, 1, 2)) fwd. sim. 10

12. ∀a z. z + a = n→ ok(lab2(a, z)) fwd. sim. 5–7

13. ∀a x y. ok(lab1(a, x, y))
induct. on n: 8, 12

14. ∀a z. ok(lab2(a, z))

15. ok(lab2(a, 1)) subst 14

16. ∀a. ok(iffalse(a)) fwd. sim. 15

17. ok(if. . .) fwd. sim. 2, 16

18. ok(let a; if. . .) fwd. sim. 17

19. ok(entry()) fwd. sim. 18

Figure 4.2: Translation of the MIR code
Figure 4.1 into a proof by induction that
the entry() label is safe to execute.
The proof goes in reverse execution
order, but the proof is constructed from
the bottom up: the steps in this proof
would be derived in the order 19, 18,
(13+14+3+4, (8+5, 7, 6), (12+9, 11, 10)),
17, (2, 1), (16, 15), where parentheses
denote subroutine calls.
The main proof step is “forward
simulation,” or executing the effect of a
line of code and determining the next
sufficient condition. When applying
functions, substitution is used, and
when label_group is encountered an
induction on n is used.

The challenge is to find an ordering of the blocks such that we can
prove that we are safe from the beginning of that block until the end of
the program. This is true by assumption for the return, so we can prove
iftrue() is safe, and if we knew that iffalse() is safe then we could
deduce that entry() is safe which is the goal. But to prove iffalse() is
safe we need to know lab2() is safe, which requires lab1() to be safe,
which requires lab2() to be safe again. In short, cycles in control flow
translate to circularity in the proof, which makes sense since this is a
proof of termination and circularity can certainly lead to nontermina-
tion.

This is where the label_group statement comes in. This appears
in the middle of the entry() block, at the location where the original
label sequence was declared. A label cannot be called until it is put in
scope by the label_group command. When we are generating the proof
of entry() (in program order), and we encounter this statement, we
prove lab1() and lab2() safe as a lemma, by induction on the variant
(see Figure 4.2). Then when we reach the branch, we recurse to prove
iftrue() and iffalse(), and we will have the safety of lab2() available
as required.

120 metamath zero: from logic, to proof assistant, to verified compiler

While loops are also handled in the same way, because they compile
down to label groups of size 1.

Recursive functions are currently not supported but the exact same
compilation technique also works for them: each strongly connected
component of the call graph is proved to be correct by induction on
the variant, and the context holds a collection of function correctness
assumptions asserting that calling functions in the group at smaller
values of the variant is valid.

4.7 Tying it all together

The “entry point” of the correctness proof is the final theorem state-
ment, which is proved by the following rule:

Program correctness okProg(el f , T)

ok-prog

G ⊢ okStart u64Str(G.filesz)⇒ f s u64Str(G.memsz)⇒ ms

okProg(ELF_lit(f s, ms,G.content), G.result)

Here okProg(el f , T) is defined as:

okProg(el f , T) := isBasicELF(el f) ∧ ∀s ∈ init(el f). validT(s)

which is exactly the statement of theorem 3.3.1. It is applied to
ELF_lit(f s, ms,G.content) which constructs the ELF file using f s and
ms (which are fields in the header) and G.content (the body of the file).

It depends on okStart, which assembles the _start() routine, the
compiler-provided entry point that calls main(). This function is re-
sponsible for setting up all global variables and calling the exit()

syscall after main() returns.17

Start procedure correctness G ⊢ okStart

startPCtx(G) ∈ PCtx := {G, ret := ⊥, epi := ⊥, se := ⊤}
mkBCtx(P) ∈ BCtx := {P , labs := ∅}

ok-start

G ⊢ proc 0 {A} asm startTCtx(G)⇒ T
mkBCtx(startPCtx(G)) ⊢ {T } A {⊥}

G ⊢ okStart

Regular procedures have a calling convention F ∈ CallConv with
the following fields:

17 Currently, users cannot directly call
exit(0) to exit early with success,
although they can exit with failure at
any time using assert(false). It
would be possible to expose exit(0)
provided that the user proves G.result
on exit, but this would require forward-
declaring the type of main.

the metamath c compiler 121

• F .args – the specification of the function arguments (as given by the
user).

• F .mctx – the calling convention for the function arguments, i.e.
which arguments are in which registers (specified by the architec-
ture).

• F .ret – the return convention, including both the calling convention
and the user type.

• F .clob – the function clobbers, i.e. which registers’ values will be
affected by the call. This is also mostly specified by the architecture.

• F .se – true if the function is permitted to perform side-effects, i.e.
proc vs func in the source language.

Regular procedure correctness G ⊢ proc f (F)

ok-start

G ⊢ proc f {Aprol ; Abody} asm
buildArgs(F .args)⇒ V buildClob(F .clob,F .mctx)⇒M

buildPrologue(M, Aprol)⇒M′, epi
P := {G, ret := F .ret, epi := epi, se := F .se}

mkBCtx(P) ⊢ {(V ,M′)} Abody {⊥}
G ⊢ proc f (F)

This rule handles a bunch of repackaging of the function start sequence
and the way it relates to the declared calling convention F , which con-
tains all the information needed for later calls to this function. It loads
the function arguments to create the initial variable context V , then
loads the argument calling convention and the clobbers into M and
executes the prologue sequence Aprol which computes a new machine
context M′ as well as an epilogue sequence epi which will undo the
effect of the prologue, and finally it creates a procedure context and
executes the body of the function Abody on the initial state.

This completes the overall structure of the proof. There are un-
deniably many intricate details in such a proof, because handling a
real language on a real instruction set involves a lot of complexity.
But hopefully this has at least made it clear how it would be possible
to compile a non-toy language down to machine code and produce
proofs along the way. In the next section, we will take a step back and
consider some of the consequences of the proof method.

122 metamath zero: from logic, to proof assistant, to verified compiler

4.8 Meta-analysis of the proof

4.8.1 Infinite sets in PA

One aspect that we have not touched on very much is the fact that
the entire proof is being conducted in Peano Arithmetic (PA). Every
single definition we have shown so far is defined, and every lemma
is proved, in PA. This has one major limitation, which is that there is
limited ability to talk about infinite sets. This is especially interesting
considering that many of the notions involve infinite sets:

• Values: nat

• Valuations: nat – finite functions mapping variable indices to values

• Expressions: set – these are functions from valuations to values

• Heaps: nat – these are finite partial functions from places to values

• Separating propositions: set – these are sets of heaps

• Types: set – these are functions from valuations to values to sepa-
rating propositions

• Variable context, Machine context: set – function from valuations to
separating propositions

• Global context: set – contains G.result which is a set of input-output
pairs

• Procedure context, Block context: set – contain many infinite com-
ponents

Here we think of nat as N and set as 2N, so anything involving an in-
finite set has sort set and anything from a countable domain has sort
nat. Some things are not just finite but also bounded; for example ma-
chine states can be bounded by approximately 2264

since the machine
itself is a bunch of bytes and the address space is limited. Recognizing
such things is useful because the powerset of an unbounded set of nat-
urals is a set but a bounded set is a nat. The powerset of a set cannot
be constructed.

Even using PA to model set at first seems impossible, because it is
just first order logic over N, we do not have second order variables.
The trick we use to resolve this is the same one used in Metamath
for working with proper classes in ZFC. We introduce a sort set as
a conservative extension of the base language (here PA) where the
elements of this sort are interpreted as formulas with one free variable.
Given a formula we construct its class as {x | p(x)} : set, and given a
class A : set we can construct (x ∈ A) : wff, and these operations are
inverses of each other.

the metamath c compiler 123

The reason this is a conservative extension is because any formula
in the new language is equivalent to one where {x | p(x)} does not
appear and (x ∈ A) only appears when A is a class variable, so in par-
ticular if the formula has no class variables then it is equivalent to one
that does not mention the class constructs at all; by eliminating classes
from every intermediate statement we can show that the formula is
derivable in plain PA.

We do not actually want to perform such a substitution though,
as it would require expanding many definitions and could lead to an
explosion in proof size. So instead we consider this as a part of the
meta-level argument for the reasonableness of the axiom system.18

4.8.2 Syntactic strings

The string sort in peano_hex.mm0 is defined like this:

strict free sort hex;

term x0: hex;

term x1: hex;

-- ...

term xf: hex;

strict free sort char;

term ch: hex > hex > char;

strict free sort string;

term s0: string;

term s1: char > string;

term sadd: string > string > string; infixr sadd: $’+$ prec 51;

def scons (c: char) (s: string): string = $ s1 c ’+ s $;

infixr scons: $’:$ prec 53;

An important property that results from this definition is that there
are no terms of type string other than those inductively built from s0,
s1, sadd, and definitions wrapping these terms (like scons). In order to
reason about strings, we axiomatize a function term s2n: string > nat;

which interprets the string as a list of numbers less than 256 in the
obvious way.

In the final theorem okProg(ELF_lit(f s, ms, content), T), the term
ELF_lit(f s, ms, content) is a string, which means that it is built es-
sentially out of concatenated string literals: ELF_lit can only use its
arguments in a very simple way. In particular, all closed string expres-
sions can be evaluated to an actual string, so this means that the verifier
can actually evaluate the string expression.

The experimental output string: my_string_def; command is a
mechanism for doing exactly this. If the verifier supports the string

output format, then it checks that the string prelude is defined as

18 It is future work, but we would like
to prove that anything derivable in
MM0-flavored PA can be translated
to a statement which is derivable in
“textbook PA.” In addition to handling
the set sort mentioned here, this
would also handle the sorts hex, char,
string, which are all self-evidently
encodable as nat but are kept separate
so that the metatheory can talk about
evaluating definitions of type string,
as discussed in section 4.8.2.

124 metamath zero: from logic, to proof assistant, to verified compiler

above, and if so it interprets s0 as the empty string, s1 c as a char-
acter, and sadd as string concatenation, and evaluates the provided
string expression and prints it on standard out.

Since the input-output behavior of the verifier is subject to formal
specification, the output command functions as a bridge between the
MM0 logic and the metalogic or the “real world.” The MM0 verifier
is made to act like a compiler, and even spits out an executable file,
and with suitable specification it will even spit out an executable file
that meets a given specification, without ever needing to trust the MMC

compiler.

5

Looking ahead

5.1 Applications

5.1.1 MM0 as an interchange format

MM0 is a logical framework in the sense that it doesn’t prescribe any
particular axioms or semantics. This makes it well suited for trans-
lations to and from other systems. A downside of this approach is
that while correctness with respect to the formal system is well de-
fined, soundness becomes unclear in the absence of a fixed foundation.
Instead, one gets several soundness theorems depending on what ax-
ioms are chosen and what semantics is targeted. General MM0 has a
soundness theorem as well, similar to the Metamath soundness the-
orem1, but these models are rather unstructured. (There is a simple
multi-sorted SOL model for MM0, but it fails completeness.) However,
for the short term, proof translation can function as a substitute for a
soundness proof, and indeed, a proof translation amounts to building
a class model of the source system in the target system.

Eventually, we hope to use MM0 to prove correctness of other theo-
rem provers, and vice versa, and proof translations play an important
role in this. There is a O(n2) problem with having n mutually sup-
porting bootstraps, as there are n2 proofs to be done. But the proof of
A ⊢ ‘A is correct’ is closely related to the proof of B ⊢ ‘A is correct’; if
we had a method for translating proofs in A to proofs in B, we would
obtain the result immediately. Moreover, proof translations compose,
so it only requires a spider-web of proof connections before we can
achieve such a critical mass. (Of course, this is only enough to get
each prover to agree that A is correct. With n verifiers we would need
n correctness proofs and an O(n) network of translations to get the full
matrix of correctness results.)

Our work in this area is modest, but it has already been quite help-

1 Mario Carneiro. Models for Metamath.
presented at CICM 2016, 2016

126 metamath zero: from logic, to proof assistant, to verified compiler

ful. We mentioned in section 1.6 some verification times for set.mm in
MM0. A dataset of this size is not something we would have a hope
of creating without a huge investment of time and effort. Instead, we
map MM statements to MM0, and then we obtain tens of thousands of
MM0 theorems in one fell swoop, a huge data set for testing that we
could not have obtained otherwise.

5.2 Translating MM to MM0

The Haskell verifier mm0-hs contains a from-mm subcommand that will
convert Metamath proofs to MM0.2 Because of the similarity of the
logics, the transformation is mostly cosmetic; unbundling is the most
significant logical change. Whenever Metamath proves a theorem of
the form ⊢ T[x, y] with no x # y assumption, we must generate two
theorems, ⊢ T[x, x] and ⊢ T[x, y] (which implicitly assumes x # y in
MM0). In many cases we can avoid this, for example if x and y are not
bound by anything, as in ⊢ x = y→ y = z→ x = z, we can just make
them metavariables instead of names, but some theorems require this
treatment, like ⊢ ∀x x = y→ ∀y y = x.

For definitions, we currently do nothing (we leave them as axioms),
but we plan to detect MM style definitional axioms and turn them into
MM0 definitions.

5.3 Translating MM0 to HOL systems

The to-hol subcommand translates MM0 into a subset of HOL in a
very natural way. A metavariable φ : s x becomes an n-ary variable φ :
s1 → · · · → sn → s, where xi : si, and all occurrences of φ in statements
are replaced by φ x. All hypotheses and the conclusion, are universally
closed over the names, and the entire implication from hypotheses to
conclusion is universally quantified over the metavariables.

For example, the axiom of generalization is

x : var, φ : wff x; φ ⊢ all x φ,

which becomes

∀φ : var→ wff, (∀x : var,⊢ φ x)⇒ ⊢ all (λx : var, φ x)

after translation.

The actual output of mm0-hs to-hol is a bespoke intermediate lan-
guage (although it has a typechecker), which is used as a stepping-off
point to OpenTheory and Lean. One of the nice side effects of this
work was that Metamath theorems in set.mm finally became available

2 The Haskell verifier is deprecated,
but this subcommand has not yet been
moved to the new system.

looking ahead 127

to other theorem provers. We demonstrate the utility of this transla-
tion by proving Dirichlet’s theorem in Lean3, using the number theory
library in Metamath for the bulk of the proof and post-processing the
statement so that it is expressed in idiomatic Lean style. Very little
of the Lean library was used for the proof. We only needed to show
things like an isomorphism between Lean’s N and Metamath’s N,
which follows because both systems have proved the universal prop-
erty of N.

5.4 Related work

The MM0 project draws from ideas in a number of fields, most of
which have long histories and many contributors. Here is a sampling
of related work in MM0-adjacent fields.

5.4.1 Bootstrapping theorem provers

The idea of a bootstrapping theorem prover is not new. There are a
number of notable projects in this space, many of which have influ-
enced the design of MM0. However, none of these projects seem to
have recognized (in words or actions) the value of parsimony, specifi-
cally as it relates to bootstrapping.

At its heart, a theorem prover that proves it is correct is a type of
circular proof. While a proof of correctness can significantly amplify
our confidence that we haven’t missed any bugs, we must eventually
turn to other methods to ground the argument, and direct inspection
is always the fallback. But the effectiveness of direct inspection is in-
versely proportional to the size of the artifact, so the only way to make
a bootstrap argument more airtight is to make it smaller.

The most closely related projects, in terms of bootstrapping a theo-
rem prover down to machine code, are CakeML and Milawa.

• CakeML4 appears to be the most active bootstrapping system to-
day. The bootstrap consists of two parts: CakeML is a compiler for
ML that is written in the logic of HOL4

5, and HOL4 is a theorem
prover written in ML. Since the completion of the bootstrap in 2014,
the CakeML team have expanded downward with verified stacks6,
formalizing the hardware of an open source processor design they
could implement using an FPGA.
Unfortunately, it seems that the bootstrap is not complete in the
sense that the ML that CakeML supports is not sufficient for HOL4,
and while a simpler kernel, called Candle, has been implemented
in CakeML, it supports a variant of HOL Light, not HOL4, and
cannot handle many of the idioms used in the correctness proof of

3 https://github.com/digama0/mm0/

blob/master/mm0-lean/mm0/set/post.

lean

4 Ramana Kumar, Magnus O. Myreen,
Michael Norrish, and Scott Owens.
Cakeml: A verified implementation
of ml. SIGPLAN Not., 49(1):179–191,
January 2014

5 Konrad Slind and Michael Norrish. A
brief overview of hol4. In International
Conference on Theorem Proving in Higher
Order Logics, pages 28–32. Springer,
2008

6 Andreas Lööw, Ramana Kumar,
Yong Kiam Tan, Magnus O Myreen,
Michael Norrish, Oskar Abrahamsson,
and Anthony Fox. Verified compilation
on a verified processor. In Proceedings
of the 40th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 1041–1053. ACM,
2019

https://github.com/digama0/mm0/blob/master/mm0-lean/mm0/set/post.lean
https://github.com/digama0/mm0/blob/master/mm0-lean/mm0/set/post.lean
https://github.com/digama0/mm0/blob/master/mm0-lean/mm0/set/post.lean

128 metamath zero: from logic, to proof assistant, to verified compiler

the CakeML compiler. Furthermore, the compiler correctness proof
takes on the order of 14 hours to run, and while we do not yet have
reliable figures, we project that the MM0 toolchain will be able to
beat this figure by 3–5 orders of magnitude (or 5–7 counting only
the verification time of the completed proof).

• Milawa7 is a theorem prover based on ACL2 developed for Jared
Davis’s PhD thesis, which starts with a simple inspectable verifier
A which proves the correctness of a more powerful verifier B, which
proves verifier C and so on. After another 12 steps or so the verifier
becomes practical enough to be able to prove verifier A correct. This
project was later extended by Magnus Myreen to Jitawa8, a Lisp run-
time that was verified in HOL4 and can run Milawa. Although this
isn’t exactly a bootstrap, it is an instance of bootstrap cooperation
(to the extent that CakeML/HOL4 can be considered a bootstrap),
of the sort we described in section 5.1.1.

There are a few other projects that have done bootstraps at the logic
level. The original version of Milawa has this characteristic, since it
does not go down to machine code but rather starts from a Lisp-like
programming language with proof capabilities and uses this language
to write a type checker for its own language. This means that issues
such as compiling to an architecture at the back end, and verified pars-
ing at the front end, don’t come up and have to be trusted.

• “Coq in Coq” by Bruno Barras (1996)9 is a formalization of the
Calculus of Constructions (CC) and a typechecker thereof in Coq,
which can be extracted into an OCaml program. Here it is not
Coq itself that is being verified but rather an independent kernel;
moreover Coq implements not CC but CIC (the calculus of inductive
constructions), and of course many inductive types are used in the
construction of the typechecker, so this fails to “close the loop” of
the bootstrap.

• John Harrison’s “Towards self-verification of HOL Light” (2006)10

writes down a translation of the HOL Light kernel (written in OCaml)
in HOL Light, and proves the soundness of the axiom system with
respect to a set theoretical model. This is the earliest example we
know of a theorem prover verifying its own implementation, but it
leaves off verification of OCaml (quite to the contrary, it is explicitly
mentioned in the paper that it is possible to violate soundness us-
ing string mutability), and the translation from OCaml code to HOL
Light definitions is unverified and slightly nontrivial in places.

• “Coq Coq Correct!” (2019)11 improves on “Coq in Coq” by verify-
ing a typechecker for PCUIC (the polymorphic, cumulative calculus
of inductive constructions), which is a much closer approximation

7 Jared Curran Davis and J Strother
Moore. A self-verifying theorem prover.
PhD thesis, University of Texas, 2009

8 Magnus O Myreen and Jared Davis. A
verified runtime for a verified theorem
prover. In International Conference
on Interactive Theorem Proving, pages
265–280. Springer, 2011

9 Bruno Barras. Coq en coq. 1996

10 John Harrison. Towards self-
verification of hol light. In Ulrich
Furbach and Natarajan Shankar, edi-
tors, Proceedings of the third International
Joint Conference, IJCAR 2006, volume
4130 of Lecture Notes in Computer Sci-
ence, pages 177–191, Seattle, WA, 2006.
Springer-Verlag

11 Matthieu Sozeau, Yannick Forster,
and Théo Winterhalter. Coq coq correct!

looking ahead 129

to Coq. It still lacks certain features of the kernel such as the mod-
ule system and some advanced kinds of inductive types, and some
core components like the guard condition are left undefined by the
specification. However, the implemented subset of Coq is at least
expressive enough to contain the formalization itself. Sadly, the
typechecker is not fast enough in practice to be able to typecheck its
own formalization.

5.4.2 Code extraction

Code extraction is the process of taking a definition in the logic and
turning it into executable code, usually by transpilation to a traditional
compiled language. Isabelle/HOL12 can target SML, Scala, OCaml,
and Haskell; HOL4 can target OCaml, and Coq13 can target OCaml
and Haskell. This is the most popular way of having simultaneously
an object to prove properties about, and a program that is reasonably
efficient. However, as argued in [14], we believe that this leaves large
gaps in the verified part, since the extraction function must be trusted
as well as the target language’s compiler.

5.4.3 ISA specification

ISA specification is becoming more commonplace.15 is a complete
formal specification of the user level Intel x86-64 ISA in the K frame-
work16, of which we have only touched a small part. Sail is a language
specifically for the purpose of specifying ISAs, and it has been used to
formalize parts of ARM, RISC-V, MIPS, CHERI-MIPS, IBM Power, and
x86

17. Our x86.mm0 specification is based on a port of the Sail x86 spec.
Centaur18 is using an x86 specification to build a provably correct chip
design.

5.4.4 Program verification

Machine code verification does not differ significantly from program
verification at other levels, and a number of techniques have devel-
oped to deal with it, such as Hoare logic and Separation logic. [19]
shows how machine code can be verified (in HOL4) by decompiling
the machine code into HOL functions.

5.4.5 Verified compilers

Verified compilers are programs that produce machine code from a
source language with a specified semantics, that have been proven to
preserve the semantics of the input program. CompCert20 is a verified

12 Florian Haftmann. Code generation
from isabelle/hol theories
13 Pierre Letouzey. Extraction in Coq:
An overview. In Conference on Com-
putability in Europe, pages 359–369.
Springer, 2008

14 Ramana Kumar, Eric Mullen, Zachary
Tatlock, and Magnus O Myreen. Soft-
ware verification with ITPs should use
binary code extraction to reduce the
TCB. In International Conference on Inter-
active Theorem Proving, pages 362–369.
Springer, 2018

15 Sandeep Dasgupta, Daejun Park,
Theodoros Kasampalis, Vikram S.
Adve, and Grigore Roşu. A Complete
Formal Semantics of x86-64 User-
Level Instruction Set Architecture. In
Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI’19),
pages 1133–1148. ACM, June 2019

16 Grigore Roşu and Traian Florin
Şerbănuţă. An overview of the K
semantic framework. Journal of Logic and
Algebraic Programming, 79(6):397–434,
2010

17 Alasdair Armstrong, Thomas
Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E. Gray, Robert M. Nor-
ton, Prashanth Mundkur, Mark Wassell,
Jon French, Christopher Pulte, Shaked
Flur, Ian Stark, Neel Krishnaswami,
and Peter Sewell. ISA semantics for
ARMv8-A, RISC-V, and CHERI-MIPS.
In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages,
January 2019. Proc. ACM Program.
Lang. 3, POPL, Article 71

18 Shilpi Goel, Anna Slobodova, Rob
Sumners, and Sol Swords. Verifying
x86 instruction implementations. In
Proceedings of the 9th ACM SIGPLAN
International Conference on Certified
Programs and Proofs, pages 47–60, 2020

19 Magnus O Myreen. Formal veri-
fication of machine-code programs.
Technical report, University of Cam-
bridge, Computer Laboratory, 2009

20 Xavier Leroy et al. The compcert
verified compiler. Documentation and
user’s manual. INRIA Paris-Rocquencourt,
53, 2012

https://github.com/digama0/mm0/blob/master/examples/x86.mm0

130 metamath zero: from logic, to proof assistant, to verified compiler

compiler for a subset of C, and CakeML21 is a verified compiler for ML.
See section 3.1 for a more in depth discussion about verified compiler
projects and how they relate to MMC.

5.4.6 Verification frameworks

For functional correctness of a particular program verified compilers
are only half the story, as one must now show that the program has
the correct behavior in the source language. For a language like C, this
is difficult because there is no facility for doing such proofs. VST22 is
a tool for proving correctness of C programs deeply embedded as Coq
terms. Iris23 is a separation logic framework for verifying programs in
Coq, from which MMC borrows many concepts.

5.4.7 Type soundness theorems

For languages with good source semantics, general soundness proper-
ties are useful for reducing the work of functional correctness. Rust-
Belt24 is a project to prove soundness of the Rust type system using
Iris. Standard ML25 is well known for being a “real-world” language
with a type soundness theorem. CakeML also formally proves a ver-
sion of ML to be type-safe since this is part of the overall correctness
theorem.

5.5 Conclusion

Metamath Zero is a theorem prover which is built to solve the problem
of bootstrapping trust into a system. Yet at the same time it is general
purpose — it does not use a tailor-made program logic, it uses what-
ever axioms you give it, so it can support all common formal systems
(ZFC, HOL, DTT, PA, really anything recursively enumerable). It is
extremely fast, at least on hand-written inputs like set.mm, and can
handle computer-science-sized problems.

The attempt to solve the problem of writing and maintaining a ver-
ifiable theorem prover lead to the development of Metamath C, which
is a fairly full-featured programming language with a focus on prov-
ably correct operation and putting the power of deductive verification
in the hands of the user. We expect the language to continue to grow
and evolve as we prove more parts of the correctness theorem. It is
well placed to fill a niche that has been too long unaddressed.

Although the correctness theorem for MMC is still ongoing, we be-
lieve there is value added in clearly delineating the necessary compo-
nents for a system that pushes the boundaries of formal verification to

21 Ramana Kumar, Magnus O. Myreen,
Michael Norrish, and Scott Owens.
Cakeml: A verified implementation
of ml. SIGPLAN Not., 49(1):179–191,
January 2014

22 Qinxiang Cao, Lennart Beringer,
Samuel Gruetter, Josiah Dodds, and
Andrew W Appel. Vst-floyd: A sepa-
ration logic tool to verify correctness
of c programs. Journal of Automated
Reasoning, 61(1-4):367–422, 2018

23 Ralf Jung, Robbert Krebbers, Jacques-
Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from
the ground up: A modular foundation
for higher-order concurrent separation
logic. Journal of Functional Programming,
28, 2018

24 Ralf Jung, Jacques-Henri Jourdan,
Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations
of the rust programming language.
Proceedings of the ACM on Programming
Languages, 2(POPL):1–34, 2017

25 Robin Milner. A theory of type
polymorphism in programming. Jour-
nal of Computer and System Sciences,
17(3):348–375, 1978

looking ahead 131

cover as much as possible, so that we can obtain the highest level of
confidence, without compromising when it comes to speed of the over-
all system, and without putting an upper bound on the performance
of verified artifacts other than the target machine itself.

Our hope in providing these tools freely to the public is to popular-
ize and normalize the concept of programming languages with strong
type systems where you can fully express and validate invariants in
the language itself, and proving functional correctness is just one more
tool in the box. Certainly this is not something that everyone will want
to do all the time, but we believe strongly in the maxim that “if you
build it, they will come:” the applications already exist but the current
options are just too hard to use except by experts.26

We also hope to see a future where all the major theorem provers
are either proven correct or can export their proofs to systems that are
proven correct, so that when we verify our most important software,
we bequeath the highest level of confidence we are capable of provid-
ing. It’s not an impossible dream — the technology is in our hands;
we need only define the problem, and solve it.

26 We haven’t really made a compelling
case that MM0 is actually usable by
non-experts, as we haven’t attempted
to seriously market the program to the
wider public. Rather, our focus has
been to first get the strongest possible
correctness claim and work toward
ease of use, instead of the more well-
trodden approach of starting from an
easy to use tool and working toward
correctness.

A

A contradiction in Metamath from grammar ambiguity

This is a metamath file which shows how an ambiguous grammar can lead to the proof of false theorems.
This is why Metamath databases generally have to be very careful with parentheses, because unambiguity
is soundness-critical.

$c wff |- F -> $. $(Declare constant symbols $)

$v p q $. $(Declare variable symbols $)

wp $f wff p $. wq $f wff q $. $(Declare wffs $)

wF $a wff F $. $(A symbol for falsity $)

$(Declare implication *without* surrounding parens. This causes grammar ambiguity $)

im $a wff p -> q $.

$(Observe that we can prove syntax theorems in multiple ways $)

ex1 $p wff F -> F -> F $= wF wF wF im im $. $(F -> (F -> F) $)

ex2 $p wff F -> F -> F $= wF wF im wF im $. $((F -> F) -> F $)

$(We only need these two prop calc axioms $)

ax-1 $a |- p -> q -> p $.

${ mp.1 $e |- p -> q $. mp.2 $e |- p $. mp $a |- q $. $}

$(Proof of false, taking advantage of "parse confusion" to transform step 1

(which is true) into step 1’ (which is false). Parentheses are shown to

indicate the intended parse, but they are (critically) not part of the string

that metamath consumes, leading to the confusion. $)

contradiction $p |- F $=

wF wF wF im im $(wff F -> (F -> F) $)

wF $(wff F $)

wF wF wF im ax-1 $(1. |- F -> ((F -> F) -> F) $)

$(1’. |- (F -> (F -> F)) -> F $)

wF wF ax-1 $(2. |- F -> (F -> F) $)

mp $. $(3. |- F $)

B

The type system of MMC

This is a specification of the type system of MMC programs. It is
roughly at the level that users interact with the type checker (it is not
written in terms of MIR, even though the formally proved version of
the type system is at the MIR level.)

Warning: This is intended as a general guide for people who like
precision and greek letters. But until the proof of correctness is com-
plete, everything in here is subject to repairs and changes. The lan-
guage description in section 3.2 is recommended prior reading.

B.1 Syntax

The syntax of MMC programs, after type inference, is given by the
following (incomplete) grammar:

α, x, h, k ∈ Ident ::= identifiers

s ∈ Size ::= 8 | 16 | 32 | 64 | ∞ integer bit size

t ∈ TuplePattern ::= _ | x | x ignored, variable, ghost variable

| t : τ | ⟨t⟩ type ascription, tuple

R ∈ Arg ::= x : τ | x : τ regular/ghost argument

it ∈ Item ::= type S(α, R) := τ type declaration

| const t := e constant declaration

| global t := e global variable declaration

| func f (R) : R := e function declaration

| proc f (R) : R := e procedure declaration

the type system of mmc 135

τ ∈ Type ::= α type variable reference

| |α| moved type variable

| 1 | ⊤ | ⊥ | bool unit, true, false, booleans

|Ns | Zs unsigned and signed integers of different sizes

| τ1 ∧ τ2 | τ1 ∗ τ2 | τ1 ∨ τ2 conjunction (regular, separating), disjunction

| τ1 → τ2 | τ1 −∗ τ2 | ¬τ implication (regular, separating), negation

| ∀x : τ1, τ2 | ∑ x : τ1, τ2 universal, existential quantification

| pe assert that a boolean value is true

| pe 7→ pe′ points-to assertion

| x : τ typing assertion

| S(τ, pe) user-defined type

pe ∈ PureExpr ::= (the first half of Expr below) pure expressions

e ∈ Expr ::= x variable reference

| () | true | false | n constants

| e1 ∧ e2 | e1 ∨ e2 | ¬e logical AND, OR, NOT

| e1 & e2 | e1 | e2 | !s e bitwise AND, OR, NOT

| e1 + e2 | e1 ∗ e2 | −e addition, multiplication, negation

| e1 < e2 | e1 ≤ e2 | e1 = e2 equalities and inequalities

| if h? : e1 then e2 else e3 conditionals

| ⟨e⟩ tuple

| f (e) (pure) function call

| let t := e1 in e2 assignment to a variable

| η ← pe; e | η ← pe ; e move assignment

| F(e) procedure call

| unreachable e unreachable statement

| return e procedure return

| label k(R) := e in e′ local mutual tail recursion

| goto k(e) local tail call

| entail e p entailment proof

| assert pe assertion

| typeof pe take the type of a variable

p ∈ PureProof ::= . . . MM0 proofs

η ∈ Place ::= x variable reference

136 metamath zero: from logic, to proof assistant, to verified compiler

Missing elements of the grammar include:

• Switch statements, which are desugared to if statements.

• Raw MM0 formulas can be lifted to the ‘Type’ type as booleans.

• Raw MM0 values can be lifted into N∞ and Z∞.

• There are more operations for working with pointers and arrays.
These are discussed in section B.2.8.

• There are operations for moving between typed values and hy-
potheses, which will be discussed later.

• There are also while loops and for loops, but we will focus on the
general control flow of label and goto.

Language items that are considered but not present (yet) in the lan-
guage include:

• Functions and procedures cannot be generic over type and propo-
sitional variables. (In fact there are no propositional variables in
the language, only the type Prop of propositional expressions.) A
generic propositional variable is used internally to model the frame
rule but it is not available to user code.

• Recursive and mutually recursive function support is currently very
limited.

Most of the constructs are likely familiar from other languages. We
will call some attention to the more unusual features:

• Ghost variables x are used to represent computationally irrelevant
data. They can be manipulated just like regular variables, but they
must not appear on the data path during code generation. We will
use xγ to generalize over ghost and non-ghost variables, where γ =

⊥ means this is a ghost variable and γ = ⊤ means it is not. We use
γ′ ≤ γ to mean that γ is “more computationally relevant” than γ′,
i.e. if xγ is ghost then xγ′ is too.

• The !s n operation performs the mathematical function 2s − n− 1,
taking 2∞ = 0 so that !∞ n = −n − 1. !s n is used for bitwise
negation of unsigned integers, and !∞ n is used for bitwise negation
of signed integers (even those of finite width).

• The assignment operator let t := e1 in e2 assigns the variables of
t to the result of e1, but here it should be understood as a new
binding, or shadowing declaration, rather than a reassignment to
an existing variable. Even array assignments will be desugared into
pure-functional update operations.
The concrete version of the assignment operator also contains a
“with x → y” clause, but this only renames variables in the source

the type system of mmc 137

(which is to say, it changes the mapping of source names to internal
names) and so is not relevant for the theoretical presentation here.

• The operator xγ ← pe; e is the primitive for mutation of the vari-
ables in the context (where, as with ghost variables, we use γ to
generalize over the ghost and non-ghost versions of the operator).
Intuitively, it can be thought as moving pe into x, but it has no ef-
fect on the type context, and is only used to coordinate data flow. In
the grammar the left hand side is generalized to a type of “places”
(a.k.a lvalues), but for now these can only be variable references.
For example,

this: has the same effect as: which we can α-rename to:

let x := 1 in let x := 1 in let x := 1 in

let y := let ⟨x, y⟩ := let ⟨x′, y⟩ :=

x ← x + 1; let x := x + 1 in let x′ := x + 1 in

−x in ⟨x,−x⟩ in ⟨x′,−x′⟩ in
e(x, y) e(x, y) e(x′, y)

• The expression label k(R) := e in e′ is similar in behavior to a re-
cursive let binding such as those found in functional languages, but
the k are all continuations, which is to say they do not return to the
caller when using goto l(e), which is how we ensure that they can
be compiled to plain label and goto at the machine code level.

• The typeof pe operator “moves” a value x : τ and returns a fact
x : τ that asserts ownership of the resources of x. See B.2.2.

B.2 Typing

B.2.1 Overview

The main typing judgments are:

• Γ ⊢ t : τ ⇒ R
types a tuple pattern against a value of type τ, producing additional
hypotheses R that will enter the context

• Γ ⊢ τ type

determines that a type τ is a valid type in the current context

• Γ ⊢ R arg

determines that R is a valid argument extending the current context

• Γ; δ ⊢ e : τ ⊣ δ′

determines that e is a valid expression of type τ, which modifies the

138 metamath zero: from logic, to proof assistant, to verified compiler

value context from δ to δ′. In the special case where δ′ = δ, we will
write Γ; δ ⊢ e : τ instead.

• Γ; δ ⊢ e⇒ pe : τ ⊣ δ′

is the same as the previous, but additionally says that the returned
value can be expressed as the pure expression pe in context Γ.

• Γ ⊢ δ means that δ is a valid value context. It is defined as: if
(x := pe : τ) ∈ δ then Γ ⊢ pe : τ and x ∈ Dom(Γ), and if (x → y) ∈ δ

then x, y ∈ Dom(Γ).

• Γ ⊢ pe : τ

The typing rule for pure expressions, which does not depend on the
value context.

• Γ ⊢ · ⊣ Γ′

an auxiliary judgment for applying pending mutations to the con-
text.

• Γ ⊢ it ok
The top level item typing judgment

Central to all of these judgments is the context Γ, which consists of:

• The global environment of previously declared items, including in
particular a record self(R̄) : S̄ recording the type of the function
being typechecked (if a function/procedure is being checked). This
doesn’t change during expression typing.

• A list of type variables α. This is only nonempty when type check-
ing a type declaration.

• A list of declared jump targets k(δ, R̄), including a special jump
target return(R̄) where R̄ is the declared return type. The δ in each
jump target is the context required for that jump to typecheck; it lies
somewhere between the initial context δ at the point of the label, and
the moved-out context |δ|.

• A list of logical variables x : |τ| with their types. Here |τ| is used to
indicate that while the type τ itself is recorded, it is only accessible
in “moved” form.

The type variables don’t depend on anything and cannot be intro-
duced in the middle of an item, so these can be assumed to come first,
but jump targets can depend on regular variables. We use the notation
Γ, k(R̄) and Γ, R to denote extension of the context with a list of jump
targets or variables, respectively, and Γ, x ← pe : τ to denote the inser-
tion of x ← pe : τ into the list of mutations, replacing x ← pe′ : τ′ if it
is present.

The secondary context used in the typing rule Γ, δ ⊢ e : τ ⊣ δ′ for
expressions is the “value context”, which contains the actual current
value of variables in the context. It has two components:

the type system of mmc 139

• A list of records of the form x := pe : τ, which represent the “actual
resources” associated to a variable x. Note that x need not be in the
context, but Γ ⊢ pe : τ so all variables in pe must be in the context.
For function arguments and other variables with no known value,
we use x : τ, a shorthand for x := x : τ, where (x : |τ|) ∈ Γ.

• A rename map, which is a list of records of the form x → y where
x and y are variables which are either in the context or in the value
context. This keeps track of what a variable’s “current name” is,
after some number of renames. When a block ends, the values as-
sociated to renamed variables become the initial values of variable
names in the code following the block.
A variable can only be renamed once, and it is always renamed to a
fresh variable; this means that the rename map is an injective partial
function, i.e., if x → y, y′ then y = y′ and if x, x′ → y then x = x′.

B.2.2 Moving types

The last essential element to understand the typing rules is the “moved”
modality on types, denoted |τ|. For separating propositions this is
also known as the persistence modality, and it represents what is left
of a proposition after all the “ownership” is removed from it. We use
moved types to represent a value that has been accessed. This satisfies
the axioms ||τ|| = |τ| and A ⇔ A ∗ |A|. We extend this to arbitrary
arguments and contexts |R| and |Γ| by applying the modality to all
contained types.

A type is called “copy” or persistent if |τ| = τ, and is denoted
τ copy.

The moved modality is defined like so:

1,⊤,⊥, bool, Ns, Zs, pe copy

τ1 ∧ τ2	=	τ1	∧	τ2
τ1 ∨ τ2	=	τ1	∨	τ2
τ1 ∗ τ2	=	τ1	∗	τ2

|∑ x : τ1, τ2| = ∑ x : |τ1| , |τ2|
|S(τ, pe)| = |S| (τ, pe) (that is, the effect of moving S is precalculated)∣∣pe 7→ pe′

∣∣ = ⊤∣∣ x : τ
∣∣ = x : |τ|

140 metamath zero: from logic, to proof assistant, to verified compiler

|∀x : τ, τ| =

∀x : τ, |τ| if τ copy

⊤ o.w.

∣∣τ → τ′
∣∣ =

τ → |τ′| if τ copy

⊤ o.w.

∣∣τ −∗ τ′
∣∣ =

τ −∗ |τ′| if τ copy

⊤ o.w.

|¬τ| =

¬τ if τ copy

⊤ o.w.

Because moving is monotonic, that is A ⇒ |A| but not the other way
around, negative uses of a non-persistent proposition cause it to com-
pletely collapse to ⊤ when moved.

When we get to pointer types in section B.2.8 we will see that
|&ownτ| =

∣∣&mutτ
∣∣ = N64, so pointers become “mere integers” after

they are moved away. (Note, however, that they actually retain their
original types for type inference purposes; that is, the typechecker re-
members that they have type |&ownτ| in order to determine the type
that would result from dereferencing the pointer, if it were still valid.)

Note that move commutes with substitution for (expression) vari-
ables, |τ| [e/x] = |τ[e/x]|, but it only partially commutes with substi-
tution for type variables: |τ[τ′/α]| ⇒ |τ| [τ′/α], because substitution
can make a non-copy type copy, so that for example |α[N/α]| = |N| =
N but |α| [N/α] = ⊤[N/α] = ⊤.

B.2.3 The Typing Rules

We now give the main typing rules for the logic. Note that ghost
variable markings are ignored during this phase; they will come back
during the ghost propagation phase.

Tuple pattern typing Γ ⊢ t : τ ⇒ R

tp-ignore

Γ ⊢ _ : τ ⇒ ·
tp-var

Γ ⊢ xγ : τ ⇒ x : τ

tp-typed

Γ ⊢ t : τ ⇒ R

Γ ⊢ (t : τ) : τ ⇒ R

tp-sum

Γ ⊢ t : τ ⇒ S̄ Γ, S̄ ⊢ t′ : τ′[t/x]⇒ S̄′

Γ ⊢ ⟨t, t′⟩ : ∑ x : τ, τ′ ⇒ S̄, S̄′

tp-sep

∀i, Γ ⊢ ti : τi ⇒ (R̄)i

Γ ⊢ ⟨t⟩ : ∗ τ ⇒ R̄

the type system of mmc 141

tp-and

∀i, τi copy ∀i, Γ ⊢ ti : τi ⇒ (R̄)i

Γ ⊢ ⟨t⟩ :
∧

τ ⇒ R̄

The only really relevant rules here for expressiveness are the tp-
var and tpp-var rules; the rest are convenience rules for being able
to destructure a type or proposition into components using the tuple
pattern. For notational simplicity we show the tp-sum rule in iterative
form, but it actually matches an n-ary tuple against an n-ary struct
type in one go.

In the tp-sum and tpp-ex rules, we use R[t/x] to denote the result
of substituting t for x in R. For this to work, t must be reified as a
tuple of variables rather than simply a destructuring pattern, which in
particular means that ‘_’ ignore patterns are interpreted as inserting
internal variables with no user-specified name rather than being omit-
ted from the context entirely as the tp-ignore rule would suggest.

Argument typing Γ ⊢ R arg

arg-type

Γ ⊢ τ type

Γ ⊢ x : τ arg

This one is simple so we get it out of the way first. We will avoid deal-
ing with variable shadowing rules here; suffice it to say that variables
in the context must always be distinct, and we will perform renaming
from the surface syntax to ensure this property when necessary.

Type validity Γ ⊢ τ type

ty-unit

Γ ⊢ 1 type

ty-true

Γ ⊢ ⊤ type

ty-false

Γ ⊢ ⊥ type

ty-bool

Γ ⊢ bool type

ty-nat

Γ ⊢Ns type

ty-int

Γ ⊢ Zs type

ty-var

α ∈ Γ

Γ ⊢ α type

ty-core-var

α ∈ Γ

Γ ⊢ |α| type

ty-pure

Γ ⊢ pe : bool

Γ ⊢ pe type

ty-not

Γ ⊢ τ type

Γ ⊢ ¬τ type

ty-and

Γ ⊢ τ type Γ ⊢ τ′ type

Γ ⊢ τ ∧ τ′ type

ty-or

Γ ⊢ τ type Γ ⊢ τ′ type

Γ ⊢ τ ∨ τ′ type

ty-sep

Γ ⊢ τ type Γ ⊢ τ′ type

Γ ⊢ τ ∗ τ′ type

ty-wand

Γ ⊢ τ type Γ ⊢ τ′ type

Γ ⊢ τ −∗ τ′ type

142 metamath zero: from logic, to proof assistant, to verified compiler

ty-all

Γ ⊢ τ type Γ, x : |τ| ⊢ τ type

Γ ⊢ ∀x : τ, τ type

ty-sum

Γ ⊢ τ type Γ, x : |τ| ⊢ τ type

Γ ⊢ ∑ x : τ, τ type

ty-points-to

Γ ⊢ ℓ : N64 Γ ⊢ v : |ø|
Γ ⊢ ℓ 7→ v type

ty-typing

Γ ⊢ x : |τ| Γ ⊢ τ type

Γ ⊢ x : τ type

ty-user

type S(α, R) ∀i, Γ ⊢ τi type Γ ⊢ ⟨pe⟩ : ∑ R[τ/α]

Γ ⊢ S(τ, pe) type

Type validity is also relatively straightforward. Type variables are
looked up in the context, and structs can have dependent types, but
the only way dependencies can appear is through ty-array (which
will appear later), which can have a natural number size bound, and
in hypotheses via ty-pure.

There is nothing non-standard in these rules, except perhaps the
requirement in the typ-forall and typ-exists rules that the types
are moved (needed because the assertion language itself should not be
able to take ownership of variables used in the assertions).

The most interesting rule is typ-typing, which describes the typ-
ing assertion x : τ . One should think of x : τ in the context as a
separating conjunction of x : |τ| (which asserts, roughly, that x is a
reference to some data in the stack frame that is a valid bit-pattern for
type τ), plus the “fact” h : x : τ , which represents ownership of all
the resources that x may point to. For example, if x : &ownτ, then x is
itself just a number, but x : &ownτ is equal to ∃v : τ, x 7→ v, saying
that x points to some data v, and v : τ may itself own some portion of
the heap.

B.2.4 Expression typing

The typing rules for expressions make use of the following operators
on contexts:

• Γ|x| “moves” x out of the context, by replacing x : τ with x : |τ|. This
does not invalidate the well formedness of any type, proposition, or
pure expression.

The rules for pure expression typing are the same as for regular
expression typing, although since all the pure expression constructors
do not change the context, they are all of the form Γ ⊢ pe : τ ⊣ Γ,
which we abbreviate as Γ ⊢ pe : τ.

Note that the tye-var-ref rule ignores the effect of mutations. This

the type system of mmc 143

is necessary so that new mutations do not cause the context to become
ill-typed. Instead, mutations are applied in the translation from sur-
face syntax, so that “x <- 1; x + x” is elaborated into “x ← 1; 1+ 1”,
while “x ← 1; x + x” in the core logic means that the x being referred
to is the one before the mutation. The surface syntax uses “with x

-> y” annotations on mutations to allow referencing both the old and
new versions of the variable.

Expression validity (pure expressions) Γ ⊢ pe : τ

tye-var-ref

(x : |τ|) ∈ Γ

Γ ⊢ x : τ

tye-unit

Γ ⊢ () : 1
tye-true

Γ ⊢ true : bool
tye-false

Γ ⊢ false : bool

tye-nat

0 ≤ n s < ∞→ n < 2s

Γ ⊢ n : Ns

tye-int

s < ∞→ −2s−1 ≤ n < 2s−1

Γ ⊢ n : Zs

tye-tuple

∀i < n, Γi ⊢ ei : τ ⊣ Γi+1

Γ0 ⊢ ⟨e⟩ : ∗ τ ⊣ Γn

tye-not

Γ ⊢ e : bool

Γ ⊢ ¬e : bool

tye-and, tye-or

Γ ⊢ e1 : bool Γ1 ⊢ e2 : bool

Γ ⊢ e1 ∧ e2 : bool Γ ⊢ e1 ∨ e2 : bool

tye-band, tye-bor

τ ∈ {Ns, Zs} Γ ⊢ e1 : τ Γ1 ⊢ e2 : τ

Γ ⊢ e1 & e2 : τ Γ ⊢ e1 | e2 : τ

tye-bnot

τ = Ns ∨ (τ = Zs′ ∧ s = ∞) Γ ⊢ e : τ

Γ ⊢ !s e : τ

tye-lt, tye-le, tye-eq

τ, τ′ ∈ {Ns, Zs} Γ ⊢ e1 : τ Γ ⊢ e2 : τ′

Γ ⊢ e1 < e2 : bool Γ ⊢ e1 ≤ e2 : bool Γ ⊢ e1 = e2 : bool

tye-if

Γ ⊢ c : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ (if c then e1 else e2) : τ

tye-struct

Γ ⊢ e : τ Γ ⊢ ⟨e⟩ : ∑ R̄[e/x]

Γ ⊢ ⟨e, e⟩ : ∑ x : τ, R̄

tye-func-call

func f (R) : S Γ ⊢ ⟨e⟩ : ∑ R̄

Γ ⊢ f (e) : ∑ S̄

The rules above are the only ones that apply to pure expressions.

144 metamath zero: from logic, to proof assistant, to verified compiler

General expressions have additional typing rules for the other con-
structions, continued below.

For general expressions, we must worry about the following addi-
tional effects:

• Variables in the context can be moved by their being referenced (in
the tye-var-move rule).

• Varables can be changed using no-op rules (the tye-cs-left and
tye-cs-right rules). We will return to this in section B.2.5.

Expression validity Γ; δ ⊢ e : τ ⊣ δ′ Γ; δ ⊢ e⇒ pe : τ ⊣ δ′

tye-cs-left

Γ; δ ⊢ · ⊣ δ1 Γ; δ1 ⊢ e⇒ pe? : τ ⊣ δ2

Γ; δ ⊢ e⇒ pe? : τ ⊣ δ2

tye-cs-right

Γ; δ ⊢ e⇒ pe? : τ ⊣ δ1 Γ; δ1 ⊢ · ⊣ δ2

Γ; δ ⊢ e⇒ pe? : τ ⊣ δ2

tye-var-move

Γ; δ, x := pe : τ ⊢ x ⇒ pe : τ ⊣ δ, x := pe : |τ|

tye-mut

Γ; δ ⊢ e1 ⇒ pe : τ ⊣ δ1 ∀z, (x → z) /∈ δ1 Γ ⊢ δ2

Γ; δ1, (x → y), (y := pe : τ) ⊢ e2 : τ′ ⊣ δ2 y /∈ δ2

Γ; δ ⊢ (xγ ← e1 with y← x; e2) : τ′ ⊣ δ2

tye-let-pure

Γ; δ ⊢ e1 ⇒ pe : τ ⊣ δ1 Γ ⊢ τ′ Γ ⊢ δ2

Γ, x : |τ| ; δ1, x := pe : τ ⊢ e2 : τ′ ⊣ δ2

Γ; δ ⊢ (let xγ := e1 in e2) : τ′ ⊣ δ2

tye-unreachable

Γ; δ ⊢ e : ⊥ ⊣ δ1 Γ ⊢ δ2

Γ; δ ⊢ unreachable e : τ ⊣ δ2

tye-let

Γ; δ ⊢ e1 : τ ⊣ δ1 Γ ⊢ t : τ ⇒ R Γ ⊢ τ′ Γ ⊢ δ2

Γ, |R|; δ1, R ⊢ e2 : τ′ ⊣ δ2

Γ; δ ⊢ (let t := e1 in e2) : τ′ ⊣ δ2

tye-proc-call

proc F(R) : S Γ; δ ⊢ ⟨e⟩ : ∑ R̄ ⊣ δ′

Γ; δ ⊢ F(e) : ∑ S̄ ⊣ δ′

tye-return

self(R̄) : S̄ Γ; δ ⊢ ⟨e⟩ : ∑ S̄ ⊣ δ′

Γ; δ ⊢ return e : ⊥ ⊣ δ′

the type system of mmc 145

tye-label

∀i, Γ, k(δ; R̄), (R̄)i; δi, (R̄)i ⊢ ei : ⊥ ⊣ δ2
i

Γ, k(δ; R̄); δ0 ⊢ e′ : τ ⊣ δ1

Γ; δ0 ⊢ (label k(R̄) := e in e′) : τ ⊣ δ1

tye-goto

k(δ′; R̄) ∈ Γ
Γ; δ ⊢ ⟨e⟩ : ∑ R̄ ⊣ δ′

Γ; δ ⊢ goto k(e) : ⊥ ⊢ δ′

tye-assert

Γ; δ ⊢ e⇒ pe : bool ⊣ δ′

Γ; δ ⊢ assert e : pe ⊣ δ′

tye-typeof

Γ; δ ⊢ e⇒ pe : τ ⊣ δ′

Γ; δ ⊢ typeof e : pe : τ ⊣ δ′

tye-entail

Γ; δ ⊢ ⟨e⟩ : ∗ A ⊣ δ′ ⊢ p : ∗ A −∗ B

Γ; δ ⊢ entail e p : B ⊣ δ′

Proofs are essentially (effectful) expressions with proposition type,
so the rules look much the same. Pure proofs are simply imported
from the MM0 logical enironment so we do not discuss them here.
The main job of Metamath C is to make sure that these pure proofs
have simple types, not using the entire context, since the user will be
directly interacting with them.

B.2.5 No-op steps

In addition to being able to step as a result of executing some ex-
pression, we also need the ability to step without anything happening
physically. This is primarily needed in order to clean up the context
to eliminate a variable, or to merge control flow to a common context,
i.e. after the branches of an if statement, and at a return and goto. It is
also used whenever the context has to drop a variable, such as after a
let expression completes.

The rules given below are not deterministic, but they are used when-
ever we can’t otherwise make progress. Using them too much may end
up in a state where a variable is missing, causing later typechecking to
fail, so the compiler will try to apply these only as necessary.

No-op step Γ; δ ⊢ · ⊣ δ′

cs-refl

Γ; δ ⊢ · ⊣ δ

cs-trans

Γ; δ1 ⊢ · ⊣ δ2 Γ; δ2 ⊢ · ⊣ δ3

Γ; δ1 ⊢ · ⊣ δ3

cs-drop

∀x, (x → y) /∈ δ

Γ; δ, (y := pe : τ) ⊢ · ⊣ δ

cs-rename
1

Γ; δ, (x → y), (y := pe : τ) ⊢ · ⊣ δ, (x := pe : τ)

cs-forget

Γ ⊢ Γ[x → pe]

Γ; δ, x := pe : τ ⊢ · ⊣ δ, x : τ

1 The cs-rename rule should only
be used if it is the only way to make
progress, i.e. when y is going out
of scope. This is needed because it
changes the interpretation of expres-
sions containing x.

146 metamath zero: from logic, to proof assistant, to verified compiler

This is a nondeterministic judgment, with the “goal” being to elimi-
nate a particular variable and/or join with separate control flow which
has assigned different values to the variables.

• The simplest way to drop a variable is with the cs-drop rule, which
works as long as this is a variable that was not obtained from a
mutation.

• For variables that are obtained by mutation, we have a x → y in the
context, and we can drop its value while storing the result back in
the original variable using the cs-rename rule.

• In order to join control flow, we also need to “forget” the value asso-
ciated with a variable. For example, if one branch of an if statement
sets x ← 1 and the other sets x ← 2, we are allowed to use these set-
tings inside the blocks of the if statement but at the end they must
agree about the setting of the variable as well as its properties. For
this we use the cs-forget rule, which erases the information that
x := pe for several variables at once. This existentially quantifies
over the variables x and reintroduces them so that we no longer
have access to the value. For this to be sound, we have a side condi-
tion that says that the context remains true if we replace x with pe,
because the actual assignments to the variables in Γ have changed
even though we are keeping the same type.

To see how this plays out, consider the code

x := 0, h : x ≥ 0 ⊢ if b { x ← 1 },

which desugars to “if b then x⊤ ← 1; () else ()”. After the mutation,
we have x → x′, x′ := 1 so we can apply cs-rename to get x := 1.
But the else branch has x := 0 so we can’t merge just yet. We can
apply cs-forget to forget x, because x : N, h : x ≥ 0 ⊢ 1 : N, 1 ≥ 0,
provided the compiler knows how to synthesize these proofs. (The
proof of 1 : N is already supplied by x ← 1 : N, but 1 ≥ 0 is not
immediately available.) If the compiler cannot find this proof, it can
be supplied by:

x := 0, h : x ≥ 0 ⊢ if b { x ← 1; h← (p : 1 ≥ 0) },

where p is a proof of 1 ≥ 0. In this case, we are using cs-rename

on x and h simultaneously, so the side goal is the same but we get the
1 ≥ 0 goal for free from the typing condition on h := (p : 1 ≥ 0).

B.2.6 Top level typing

The full program consists of a list of top level items, which are type-
checked incrementally:

the type system of mmc 147

AST typing Γ ⊢ it ⊣ Γ′

ok-zero

Γ ⊢ · ⊣ Γ

ok-append

Γ ⊢ it ⊣ Γ′ Γ′ ⊢ it ⊣ Γ′′

Γ ⊢ it, it′ ⊣ Γ′′

Individual items are typed as follows:

Item typing Γ ⊢ it ⊣ Γ′

ok-type

Γ, α ⊢ ∑ R type Γ, α, R ⊢ τ type

Γ ⊢ type S(α, R) := τ ⊣ Γ, type S(α, R) := τ

ok-const

Γ ⊢ pe : τ Γ ⊢ t : τ ⇒ R̄

Γ ⊢ const t := pe ⊣ Γ, R̄

ok-global

Γ ⊢ e : τ ⊣ Γ′ Γ′ ⊢ t : τ ⇒ R̄

Γ ⊢ global t := e ⊣ Γ′, R̄

ok-func, ok-proc

kw ∈ {func, proc} Γ ⊢ ∑ R type Γ, R ⊢ ∑ S type

Γ, (self(R) : S), R; R ⊢ e : ⊥ ⊣ δ

Γ ⊢ kw f (R) : S := e ⊣ Γ′, kw f (R) : S

B.2.7 Uninitialized data

The approach for handling mutation also cleanly supports uninitial-
ized data. We extend the language as follows:

Type ::= · · · | τ? Expr ::= · · · | uninit
∣∣∣τ?
∣∣∣ = |τ|? x : τ? = ⊤

ty-maybe

Γ ⊢ τ type

Γ ⊢ τ? type

tye-uninit

Γ ⊢ τ type

Γ; δ ⊢ uninit : τ? ⊣ δ

That’s it. Note that τ ≤ τ? because the typing predicate of τ? is
⊤, so we can always satisfy the side condition of cs-forget when
performing a strong update of x : τ? to τ when we initialize it.

B.2.8 Pointers

Thus far the rules have only talked about local variables and mutation
of local variables, that we think of as being on the stack frame of the
function. To understand the representation of pointers in the type
system, it will help to understand the way contexts are modeled as
separating propositions. The context is a large separating conjunction

148 metamath zero: from logic, to proof assistant, to verified compiler

of x : τ assertions for every (x : τ) ∈ Γ and A for every h : A,
plus additional “layout” information about the relation of non-ghost
variables to the stack frame.

Singleton pointers

The simplest pointer type is &snη, which is defined as sn &η. x : &snη

simply means that x is a pointer that points to η, which is a “place”,
a writable location. x : &snη = (x = &η), where &η is the location
that η is stored in memory; see section B.5. (This is not the same as
x 7→ η, because η is a place, i.e. a direct reference to a variable in the
context, not a value.) This predicate is duplicable, so &snη is copy (and
coercible to N64). We add the following:

Type ::= · · · | &snη Expr ::= · · · | ∗e | &e PureExpr ::= · · · | &η

&snη := sn &η

tye-snp

Γ ⊢ η place

Γ ⊢ &η : N64

tye-deref

Γ; δ ⊢ e : &snη ⊣ δ′

Γ; δ ⊢ ∗e⇒ η ⊣ δ′ place

tye-shr

Γ; δ ⊢ e⇒ η ⊣ δ′ place

Γ; δ ⊢ &e⇒ &η : &snη ⊣ δ′

To use these generalized lvalues, we need operations to read and write
them:

tye-read

Γ; δ ⊢ e⇒ η ⊣ δ1 place

Γ; δ1 ⊢ η ⇒ pe : τ ⊣ δ2

Γ; δ ⊢ e⇒ pe : τ ⊣ δ2

tye-write

Γ; δ ⊢ e⇒ η ⊣ δ1 place

Γ; δ1 ⊢ (η ← pe; e2) : τ ⊣ δ2

Γ ⊢ (e← pe; e2) : τ ⊣ δ2

We needed two new judgments above, Γ ⊢ η place, which asserts
that η is a place in the context, and Γ; δ ⊢ e ⇒ η ⊣ δ′ place which
asserts that e evaluates as an lvalue to place η (which may require
transforming the code to add a temporary variable). The simplest
example of a place is a variable x ∈ Γ, but one can also take a subpart
of a struct or a slice of an array. However, note that ∗e is a place
expression but not a place value; it evaluates according to tye-deref.

Note that writing to a place as in tye-write changes the type &snη

to &snη′ (it rewrites all occurrences of one with the other in the con-
text), if η′ is the renamed place after the mutation. This is because
the pointer has not changed, but the data being pointed to has been
updated, so we should now retrieve the new value, not the (ghost) old
value.

the type system of mmc 149

Owned pointers

An owned pointer is fairly simple. We define x : &ownτ as ∃v :
τ, x 7→ v, but we can’t directly dereference an owned pointer as we
must first have access to the variable v, so we require that it first be
destructured to be used.

Type ::= · · · | &ownτ |&ownτ| = N64

x : &ownτ = ∃v : τ, x 7→ v

ty-own

Γ ⊢ τ type

Γ ⊢ &ownτ type

tp-own

Γ ⊢ t : τ ⇒ S̄ Γ, S̄ ⊢ t′ : &snt⇒ S̄′

Γ ⊢ ⟨t, t′⟩ : &ownτ ⇒ S̄, S̄′

By using destructuring, it is possible to obtain a pointer such as
t : &sn(a, b); this type asserts that a and b are contiguous in memory
such that a single pointer can access them both. This type can itself be
destructured as if it were &sna ∗&snb.

Mutable pointers

Before we can explain mutable pointers, we need the concept of a mu-
table parameter. We have already seen that the← operator can mutate
variables inside the value context δ, but currently return will drop all
mutated values and return only the return values in the function sig-
nature. In order to allow variables to be mutated through the function,
we add the ability to mark a variable in the returns S as outx y : τ, if
x is a function parameter (which is itself marked as mut x : τ). This
has the meaning that the variable x will be mutated so that δ ⊢ x →∗ y
when the function reaches the return.

The rule tye-return is unchanged, but we have a new rule for
fulfilling an outx y argument:

tye-struct-out

δ ⊢ x →∗ y Γ; δ ⊢ y : τ ⊣ δ1 Γ; δ1 ⊢ ⟨e⟩ : ∑ R̄[pe/y]

Γ ⊢ ⟨e⟩ : ∑(outx y : τ), R̄

Here δ ⊢ x →∗ y means that x → · · · → y ̸→ according to the rename
map in δ.

Conversely, when calling a function, the mut parameters get cap-
tured in the calling context, and changed to their out variants. Describ-
ing this is technically complicated so we will use a prose description.
We define only the construct let ⟨y, t⟩ := F(e) in e2 where t is a tuple
pattern and y has the same length as the number of out parameters of
F; that is, proc F(R) : outx y : τ, S.

150 metamath zero: from logic, to proof assistant, to verified compiler

The arguments of F must be e : τ if R = (x : τ), and must be
η : τ place if R = (mut x : τ). If η is provided for argument x, and
outx y : τ′ is among the out arguments of the function, and y is the
corresponding element of the tuple in the let ⟨y, t⟩ pattern match, then
we perform an assignment η ← y on return from the function. All
these η places are disjoint because they were passed simultaneously to
F, so there is no ambiguity about the order of writes. Finally, the result
of the F(e) invocation is pattern matched against the tuple pattern t
and e2 is executed.

The type &mutτ is not a true type, but is allowed in function signa-
tures to indicate a &snη value where η is external to the function. The
changes to η are a “side effect” and so we use the outx y functionality
from the previous section to support it.

In brief, if x : &mutτ appears in the function arguments, we replace
it by v : τ, x : &snv in the function arguments and add outv v′ : τ at
the beginning of the function returns. &mutτ is not allowed to appear
any other place than the top level of a function argument.

Shared pointers

Shared pointers are the most complex, because they cannot be mod-
eled by separating conjunctions, at least without techniques such as
fractional ownership. This is not a problem until we get to the under-
lying separation logic. Here we only need to mark work that will be
perfomed later on.

We introduce a new type, a heap reservation type called refa τ, the
elements of which are called heap variables. The expression x : refa τ

means that x : τ, but x is not owned by the current context. Heap
variables can overlap each other, but not other regular variables in the
context.

Heap variables resemble shared references from Rust, and in par-
ticular they are annotated with a “lifetime”. The difference is that the
pointer-ness is separated out; a heap variable directly has the type of
the pointee, and the pointer is just a &snη where η is a heap variable.

A lifetime a is modeled roughly as a (precise, aka subsingleton)
separating proposition P, with each x := pe : refa τ being modeled
as a place η for which P ⇒ (η := pe : τ). That is, we can weaken
P to obtain the fact that η := pe : τ. (The relation P ⇒ Q, which
is a regular (not separating) proposition, is defined as ⊢ P → (Q ∗
⊤).) Because P is a precise proposition, it satisfies (P ⇒ ∃x, Q) →
(∃x, (P ⇒ Q)), which means we can pattern match on heap variables
like regular variables, for example to obtain &τ from &&ownτ. But this
is only relevant for the semantic model; in the type checker we simply

the type system of mmc 151

need some rules for how to manipulate these variables.

Syntactically, a lifetime can be either extern, referring to data outside
the current context, or x, some variable in the context. These denote
the scope of the borrow; a variable which is borrowed cannot be mu-
tated. (Possible extensions include lifetimes with scope {x, y, z} for
creating data that spans multiple variables, and lifetimes with scope
x.field in order to borrow only parts of a variable without locking the
whole variable.) The proposition P from the previous paragraph is the
implicit frame proposition in the extern case, and x := pe : τ from the
value context at the time of the borrow in the case of x. (In the case of
multiple variables, it is the separating conjunction of these x := pe : τ

conditions and in the case of a subobject we destructure this proposi-
tion and pull out the η := pe : τ component.)

a ∈ Lft ::= extern | x Type ::= · · · | refa τ

tp-sum-ref

Γ ⊢ t : refa τ ⇒ S̄ Γ, S̄ ⊢ ⟨t′⟩ : refa(τ′[t/x])⇒ S̄′

Γ ⊢ ⟨t, t′⟩ : refa(∑ x : τ, R)⇒ S̄, S̄′

ty-ref

Var(a) ⊆ Γ Γ ⊢ τ type

Γ ⊢ refa τ type

tye-ref

Γ; δ ⊢ e⇒ (η := pe : τ) ⊣ δ′ reada

Γ; δ ⊢ e : refa τ ⊣ δ′

Here the Γ; δ ⊢ e ⇒ (η := pe : τ) ⊣ δ′ reada judgment is a conjunc-
tion of Γ; δ ⊢ e ⇒ η ⊣ δ1 place followed by Γ ⊢ δ1 ⇒ δ′, such that
Γ; δ′ ⊢ η := pe : τ reada. That is, first we evaluate the place expression,
then we use Γ ⊢ δ1 ⇒ δ′ to ensure that η is locked and readable at type
τ, and the final judgment asserts that in the result state we can in fact
read η : τ from origin a.

δ ∈ VCtx ::= δ, (refa x := pe : τ)

cs-lock

Γ ⊢ δ, (x := pe : τ) ⊢ · ⊣ δ, (refx x := pe : τ)

cs-unlock

∀y, (refx y := −) /∈ δ

Γ ⊢ δ, (refx x := pe : τ) ⊢ · ⊣ δ, (x := pe : τ)

tyr-var

(refa x := pe : τ) ∈ δ

Γ; δ ⊢ x := pe : τ reada

tye-read-ref

Γ; δ ⊢ e⇒ η ⊣ δ′ place

Γ; δ′ ⊢ η := pe : τ reada

Γ; δ ⊢ e⇒ pe : |τ| ⊣ δ′

Note that we cannot move out a value from a ref variable, which
is reflected in the use of |τ| in tye-read-ref. We also cannot mu-
tate a ref, meaning that while a variable is locked (meaning that it is

152 metamath zero: from logic, to proof assistant, to verified compiler

represented in the value context as a refx x), mutation is not possi-
ble; however it is possible to mutate a variable that is currently locked
by first unlocking it using the cs-unlock rule, which requires first
deleting all the heap variables that reference x using the cs-drop rule.

In fact, we can’t even really read a ref; the value read is only avail-
able as a ghost value, unless it is accessed indirectly via a shared refer-
ence. Using heap variables, we can desugar shared references similarly
to owned pointers:

Type ::= · · · | &aτ &aτ := ∃v : refa τ, &snv |&aτ| = N64

ty-shr

Var(a) ⊆ Γ Γ ⊢ τ type

Γ ⊢ &aτ type

tp-shr

Γ ⊢ refa t : τ ⇒ S̄ Γ, S̄ ⊢ t′ : &snt⇒ S̄′

Γ ⊢ ⟨t, t′⟩ : &aτ ⇒ S̄, S̄′

B.2.9 Arrays

Arrays here are fixed length, depending on another variable in the
context.

Type ::= · · · | array τ pe |array τ n| = array |τ| n

x : array τ n = (x : n→ |τ|) ∗ ∗i<n x[i] : τ

ty-array

Γ ⊢ τ type Γ ⊢ n : Ns

Γ ⊢ array τ n type

TODO

B.3 Ghost propagation

Ghost annotations are optional in most cases, because of the ghost
propagation pass that automatically makes as many things ghost as
possible. The invariant that we uphold is that a ghost variable must
not have an M-place associated with it, while a regular variable may
have an M-place. However, it is consistent with this that there are
no M-places at all, so we have some inductive conditions on what
variables must have M-places, which are roughly analogous to dead-
code elimination.

Ghost propagation (dead-store elimination) has to be done in tan-
dem with reachability analysis (dead-code elimination), because if can
convert data dependencies into control dependencies, meaning that
parts of the code may in fact have the program counter itself being

the type system of mmc 153

ghost. When this happens, we can’t execute anything with side ef-
fects or anything whose value is computationally relevant, because the
physical machine never reaches these lines.

To express all this, we will use a judgment Γα; δρ ⊢ e : τγ ⊣ δ′ρ
′

that augments the typing condition with four ghost annotations; in
addition we will be modifying the ghost annotations inside δ and δ1 to
make them more strict (i.e. possibly turning x⊤ to x⊥).

• α, the variable on Γ, is either ⊤ or ⊥. If α = ⊥ then the program
counter is ghost, which is to say, we are unable to perform any op-
eration that involves emitting code. This happens when we branch
on a ghost variable.

• ρ, the variables associated to the before and after value contexts,
are also ⊥ or ⊤ and indicate whether the beginning or end of e is
reachable.

• Because type inference is complete, we can treat the type τ of e as
an input to the judgment. Here τγ is a type extended with ghost an-
notations in all subexpressions. The typing rules for such extended
types assert that a type is ghost only if all subexpressions are ghost.

B.3.1 Ghost annotated types and tuple patterns

The types that show up in the expression judgment are annotated with
γ ghost annotations at all levels, subject to a local coherence condition
that states that a ghost type must only have ghost parts. This allows us
to only compute some parts of a type as long as we have all the parts
we actually need for downstream processing. While the language itself
admits ghost annotations on variables in a tuple pattern and variable
binders in a struct, these are only upper bounds on the computational
relevance, because we are interested in eliminating parts of a type for
optimization purposes even if they were not claimed to be ghost.

Ghost-annotated type validity τγ ctype

cty-unit, cty-bool

1γ, boolγ ctype

cty-nat, cty-int

N
γ
s , Z

γ
s ctype

cty-var, cty-core-var

α ∈ Γ

αγ, |α|γ ctype

cty-inter, cty-union, cty-list

∀i, τ
γi
i ctype ∀i, γi ≤ γ′

(
⋂

τγ)γ′ , (
⋃

τγ)γ′ , (∗ τγ)γ′ ctype

cty-prop

Aγ ctype

154 metamath zero: from logic, to proof assistant, to verified compiler

cty-struct

γ2 ≤ γ1, γ τγ2 ctype τ′
γ
ctype

(∑ xγ1 : τγ2 , τ′)γ ctype

Ghost-annotated tuple pattern validity t : τγ ⇒ Rγ′

ctp-ignore

_ : τγ ⇒ ·

ctp-var

γ′ ≤ γ

xγ : τγ′ ⇒ xγ′ : τ

ctp-typed

t : τγ ⇒ Rγ′

(t : τ) : τγ ⇒ Rγ′

ctp-sum

γ2 ≤ γ1, γ3 t : τγ2 ⇒ Rγ ⟨t′⟩ : (τ′[t/x])γ3 ⇒ Rγ ′

⟨t, t′⟩ : (∑ xγ1 : τγ2 , τ′)γ3 ⇒ Rγ, Rγ ′

The intuitive meaning of τγ is that τ⊤ is a value that will actu-
ally have storage space allocated for it, while τ⊥ is a value that will
not need to be calculated (even if it is stored in a non-ghost vari-
able). These rules assume that the full ghost annotation assignment
is known and just give constraints on that assignment, but in practice
we will start from an assignment that makes everything ghost, and in-
crementally shift this upward in a coordinated fashion. At the end we
may end up with an impossible constraint such as a computationally
relevant unbounded integer value, which will cause an error during
legalization.

B.3.2 The expression typing judgment

For the expression judgment Γα; δρ ⊢ e : τγ ⊣ δ′ρ
′
, we have Γ, δ, e, τ as

inputs and δ′ as output, with the annotations α, ρ, ρ′, γ being solved
for by a fixed point algorithm. It is safe to assume that γ ≤ ρ′ ≤ ρ and
γ ≤ α in this judgment (that is, the end of a statement is only reachable
if the beginning is, and the return value is only needed if the end of
the statement is reached), unless τ is a ghost type like 1 or A in which
case γ ≤ ρ′, α need not hold.

We also add an annotation σ ∈ {⊥,⊤} on functions (including self),
which can be seen in rule tyc-proc-call, for example; this is the side
effect analysis, see section B.3.3.

Ghost-annotated expression validity Γα; δ
ρ1
1 ⊢ e : τγ ⊣ δ

ρ2
2

tyc-cs-left

Γ; δ ⊢ · ⊣ δ1 Γα; δ
ρ
1 ⊢ e : τγ ⊣ δ

ρ′

2

Γα; δρ ⊢ e : τγ ⊣ δ
ρ′

2

the type system of mmc 155

tyc-cs-right

Γα; δρ ⊢ e : τγ ⊣ δ
ρ′

1 Γ; δ1 ⊢ · ⊣ δ2

Γα; δρ ⊢ e : τγ ⊣ δ
ρ′

2

tyc-var-ref

(xγ′ := pe : τ) ∈ δ |τ| = τ′ γ ≤ α, ρ, γ′

Γα; δρ ⊢ x : τ′
γ ⊣ δρ

tyc-unit

Γα; δρ ⊢ () : 1γ ⊣ δρ

tyc-true, tyc-false

γ ≤ α, ρ

Γα; δρ ⊢ true, false : boolγ ⊣ δρ

tyc-nat, tyc-int

γ ≤ α, ρ

Γα; δρ ⊢ n : N
γ
s , Z

γ
s ⊣ δρ

tyc-not

Γα; δ
ρ1
1 ⊢ e : boolγ ⊣ δ

ρ2
2

Γα; δ
ρ1
1 ⊢ ¬e : boolγ ⊣ δ

ρ2
2

tyc-and, tyc-or, . . .
Γα; δ

ρ1
1 ⊢ e1 : boolγ ⊣ δ

ρ2
2 Γα; δ

ρ2
2 ⊢ e2 : boolγ ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ e1 ∧ e2, e1 ∨ e2 : boolγ ⊣ δ

ρ3
3

tyc-if

Γα; δ
ρ1
1 ⊢ c : boolγ

′ ⊣ δ
ρ2
2

Γα∧γ′ ; δ
ρ2
2 ⊢ e1, e2 : τγ ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ (if c then e1 else e2) : τγ ⊣ δ

ρ3
3

tyc-struct

γ2 ≤ γ1, γ Γα; δ
ρ1
1 ⊢ e : τγ2 ⊣ δ

ρ2
2

Γα; δ
ρ2
2 ⊢ ⟨e⟩ : (τ′[e/x])γ ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ ⟨e, e⟩ : (∑ xγ1 : τγ2 , τ′)γ ⊣ δ

ρ3
3

tyc-var-move

γ ≤ α, ρ, γ′

Γα; (δ, xγ′ := pe : τ)ρ ⊢ x : τγ ⊣ (δ, xγ′ := pe : |τ|)ρ

tyc-mut

γ1 ≤ γ Γα; δ
ρ1
1 ⊢ e1 : τ

γ1
1 ⊣ δ

ρ2
2

Γα; δ
ρ2
2 , (x → y), (yγ1 := e1 : τ1) ⊢ e2 : τ

γ2
2 ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ (xγ ← e1 with y← x; e2) : τ

γ2
2 ⊣ δ

ρ3
3

tyc-unreachable

ρ2 ≤ ρ Γα; δρ ⊢ e : ⊥⊥ ⊣ δ
ρ1
1

Γα; δρ ⊢ unreachable e : τγ ⊣ δ
ρ2
2

tyc-let

Γα; δ
ρ1
1 ⊢ e1 : τ

γ1
1 ⊣ δ

ρ2
2 t : τ

γ1
1 ⇒ Rγ

(Γ, |R|)α; (δ2, Rγ)ρ2 ⊢ e2 : τ
γ2
2 ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ (let t := e1 in e2) : τ

γ2
2 ⊣ δ

ρ3
3

156 metamath zero: from logic, to proof assistant, to verified compiler

tyc-return

ρ2 ≤ ρ ρ1 ≤ α, γ′ (∑ S̄)γ′ ctype

selfσ(R̄) : S̄ Γα; δρ ⊢ ⟨e⟩ : (∑ S̄)γ′ ⊣ δ
ρ1
1

Γα; δρ ⊢ return e : ⊥γ ⊣ δ
ρ2
2

tyc-proc-call

γ′ ≤ γ σ ∧ ρ2 ≤ α, γ, σ′ (∑ R̄)γ, (∑ S̄)γ′ ctype

selfσ′(−) : − procσ F(R) : S Γα; δ
ρ1
1 ⊢ ⟨e⟩ : (∑ R̄)γ ⊣ δ

ρ2
2

Γα; δ
ρ1
1 ⊢ F(e) : (∑ S̄)γ′ ⊣ δ

ρ2
2

tyc-label

∀i, (Γ, kα(δ; R̄), (R̄)i)
αi ; (δi, (R̄)i)

ρi ⊢ ei : ⊥⊥ ⊣ δ′i
ρ′i

(Γ, kα(δ; R̄))α; δ
ρ1
1 ⊢ e′ : τγ ⊣ δ

ρ3
3

Γα; δ
ρ1
1 ⊢ (label k(R̄) := e in e′) : τγ ⊣ δ

ρ3
3

tyc-goto

α′ ≤ α ρ2 ≤ ρ ρ1 ≤ γ kα′(δ
ρ1
1 ; R̄) ∈ Γ

Γα; δρ ⊢ ⟨e⟩ : (∑ R̄)γ ⊣ δ
ρ1
1

Γα; δρ ⊢ goto k(e) : ⊥γ′ ⊢ δ
ρ2
2

tyc-assert

ρ2 ≤ σ, α, γ selfσ(−) : −
Γα; δ

ρ1
1 ⊢ e : boolγ ⊣ δ

ρ2
2

Γα; δ
ρ1
1 ⊢ assert e : eγ′ ⊣ δ

ρ2
2

tyc-typeof

Γα; δ
ρ1
1 ⊢ e : τ⊥ ⊣ δ

ρ2
2

Γα; δ
ρ1
1 ⊢ typeof e : e : τ

γ ⊣ δ
ρ2
2

tyc-entail

Γα; δ
ρ1
1 ⊢ ⟨e⟩ : (∗ A)⊥ ⊣ δ

ρ2
2 ⊢ p : ∗ A −∗ B

Γα; δ
ρ1
1 ⊢ entail e p : Bγ ⊣ δ

ρ2
2

These rules have the same form as the tye-* rules (slightly simpli-
fied to focus on the new part, the α, ρ, γ annotations). The key new
thing to notice is the inequality side conditions in most of the rules.
For example:

• tyc-var-move requires γ ≤ α, ρ, γ′ because if the result of the move
is actually needed (γ) then we must execute code (α) that is reach-
able (ρ) and the data to move must actually be available (γ′).

• tyc-if is the main rule that changes α. Inside the branches, α be-
comes α ∧ γ′, because if we did not evaluate the condition we can’t
enter the branches.

• tyc-return requires ρ2 ≤ ρ, just to ensure the lemma (Γα; δ
ρ1
1 ⊢

e : τγ ⊣ δ
ρ2
2) → ρ2 ≤ ρ1, but in practice we can always set ρ2

to ⊥ because it is unreachable. Similar conditions appear in tyc-
unreachable and tyc-goto, since these expressions do not ter-
minate normally. The other condition, ρ1 ≤ α, γ says that if we
reach the return (ρ1), then we must be able to execute the return
statement (α), and we need the value to return (γ′).

the type system of mmc 157

• tyc-proc-call makes use of the σ annotations on functions. If a
function has σ = ⊤, then it may perform a side effect, so we cannot
omit it. We require γ′ ≤ γ because if we need the result (γ′) then
we need the arguments (γ), and we require σ∧ ρ2 ≤ α, γ, σ′ because
if the function F is side effecting (σ) and the call is reachable (ρ2),
then we must execute the call (α), we need the arguments (γ), and
this function is itself side-effecting (σ′).

• tyc-assert requires that ρ2 ≤ σ, α, γ because if we reach the assert
(ρ2), then because failure is a side effect (σ) we have to execute it (α)
and we need the condition (γ).

• In tyc-goto, we add α and ρ annotations to k(δ, R̄) to coordinate
the entry to this block. Here α′ = ⊥ is a bit unusual, because it
means that the block we are jumping to does not physically exist. In
this case, we don’t need to jump to it, so no code is needed (α′ ≤ α),
we have an arbitrary postcondition ρ2 that may as well be ⊥, and
we need ρ1 ≤ γ because if the goto is reachable then we need the
value.

We also need an annotated version of the no-op step judgment, in
order to weaken variables when they are no longer live. This is exactly
the same as cs-*, but with the new rule ccs-ghost that allows us
to make a variable ghost. In particular, since the tyc-mut rule does
not remove the old value of the variable, it is in general a copy and
not actually a mutation, so we will want to use ccs-ghost just after
constructing the expression e1 to kill the old value so that we can safely
replace it in-place with the new value.

Ghost annotated no-op step Γ; δ ⊢ · ⊣ δ′

ccs-refl

Γ; δ ⊢ · ⊣ δ

ccs-trans

Γ; δ1 ⊢ · ⊣ δ2 Γ; δ2 ⊢ · ⊣ δ3

Γ; δ1 ⊢ · ⊣ δ3

ccs-drop

∀x, (x → y) /∈ δ

Γ; δ, (yγ := pe : τ) ⊢ · ⊣ δ

ccs-rename

Γ; δ, (x → y), (yγ := pe : τ) ⊢ · ⊣ δ, (xγ := pe : τ)

ccs-forget

Γ ⊢ Γ[x → pe]

Γ; δ, xγ := pe : τ ⊢ · ⊣ δ, xγ : τ

ccs-ghost

γ′ ≤ γ

Γ; δ, (xγ := pe : τ) ⊢ · ⊣ δ, (xγ′ := pe : τ)

158 metamath zero: from logic, to proof assistant, to verified compiler

B.3.3 Side effects

While the ghost analysis pass is primarily intraprocedural, it contains
one interprocedural part, namely the assignment of σ annotations to
the procedures. When σ = ⊤, the procedure may perform a side
effect, which is defined as anything which performs IO (i.e. compiler
intrinsics and syscalls), plus assert false which causes early termination
(which is also observable).

If a side effectful operation is reachable from a procedure, then we
mark the procedure itself as side effectful (note that func functions
cannot have side effects). Note in particular that mutation is not con-
sidered a side effect, because the compiler has full visibility into what
is going on and can track the values appropriately.

B.4 Optimization and legalization

At this point, we are mostly done with user level errors; if type check-
ing and the ghost analysis pass succeed then we should be able to
complete compilation. The only exception to this is types that are too
large to exist (which will be caught in this pass) and operations that
cannot be compiled, such as unbounded integer operations.

Because the source language makes use of unbounded integer op-
erations even in computationally relevant positions, it is not sufficient
to simply require that any variable or expression of type N∞ is ghost;
for example a reasonable operation might be x, y : N64 ⊢ let z : N64 :=
(x + y) % 264, which we expect to be compiled to an ADD instruction,
despite the fact that x + y : N∞ is an intermediate in this computation.

We call this phase legalization because it performs general rewriting
in order to replace source level operations with operations which exist
on the target architecture. So for example we can replace the subex-
pression (x + y) % 264 by x +64 y, where x +64 y is addition modulo 264

that we expect to exist on the target machine. Once we have done so,
there are no longer any unsized intermediates in the operation, and
we can proceed with compilation.

B.5 Semantics

Semantics plays a rather more important role in Metamath C com-
pared to other languages because the target architecture for the com-
piler is literally separation logic. So we need a way to interpret every
judgment just described into a separating proposition or theorem.

the type system of mmc 159

B.5.1 Interpreting the context

The context Γ in the typing rules is ultimately compiled down to a
separating proposition over machine states, and we need to interpret
it in such a way that a validly typed expression corresponds to a valid
theorem in separation logic.

Each variable in the context may or may not be associated with a
component of the machine state which is currently storing the value of
that variable. A ghost variable will never have machine state attached
to it, and a variable may also not have machine state attached to it if it
is past its last use, or if it is uninitialized. To express this, we will add
a new kind of context, a machine context ∆ which extends δ with this
information at each variable site.

• For each procedure in the global environment of declared items, we
have a (persistent) proposition proc-ok(ℓ : R → S) which asserts
that location ℓ (an actual machine location) is the entry point to a
function f which, if called with arguments R, will return values
S, according to the calling convention (which can be an additional
parameter to proc-ok, but we can suppose that there is one fixed
calling convention).
Mutual recursions are more complex, as we may not be able to
promise that they are safe to call without additional restrictions. In-
stead, for such functions we have proc-ok(ℓ : (v : N , h : v < n, R)→ S)
where v is the variant, and n is a parameter, the value of the variant
passed into this function. In other words, they must be called with
a value of the variant less than the current one. We will not discuss
the compilation of recursive functions here.

• Type declarations correspond to certain unfolding theorems so they
have no representation in the context. We can ignore the type vari-
ables α in Γ because we don’t support generic functions.

• The jump targets k(δ, R̄) in Γ become (persistent) propositions
jump-ok(ℓ : (δ, R̄)→ ⊥) asserting that if we jump to location ℓ with
arguments R̄ according to the calling convention of the jump, then
this machine state is OK (will eventually reach a final termination
with the desired global properties). The return(R̄) continuation is
also a jump target of this form (where the calling convention uses
ret instead of jump).

• Each variable x : |τ| becomes a (regular) proposition x : |τ| .

The value context δ is extended to ∆ by extending some of the vari-
able records with @ µ annotations. They are interpreted like so:

• We store no additional information regarding the rename map.

160 metamath zero: from logic, to proof assistant, to verified compiler

• Each xγ := pe : τ may either be left as is or extended to x⊤ @ µ :=
pe : τ where µ is an M-place. The second form is only available for
non-ghost variables, and the M-places of distinct variables in the
context will always be compatible. The former corresponds to the
separating proposition pe : τ , and the latter to µ 7→ pe ∗ pe : τ .

• For the shared variables extension, we store a list of active locks
x := pe : τ corresponding to uses of the cs-lock rule. We say
x := pe : τ is an active lock if (refx x := pe : τ) ∈ δ. For each active
lock, we also store pe : τ .

• For each heap variable refx yγ := pe′ : τ′ such that x := pe : τ is an
active lock, we store the pure proposition (µ 7→ pe ∗ pe : τ ⇒ µ′ 7→

pe′ ∗ pe′ : τ′) if x @ µ and y @ µ′, with the µ conjuncts omitted if
one or both of x and y is ghost.

• For each heap variable refextern yγ := pe′ : τ′, we store the pure

proposition (P ⇒ µ′ 7→ pe′ ∗ pe′ : τ′) where P is the frame propo-
sition (that is, P is an implicit additional precise separating propo-
sition passed in and out of the function).

Bibliography

[1] The QED manifesto. In Automated Deduction - CADE-12, 12th In-
ternational Conference on Automated Deduction, Nancy, France, June
26 - July 1, 1994, Proceedings, pages 238–251, 1994.

[2] Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formal-
ization techniques for asymptotic reasoning in classical analysis.
J. Formalized Reasoning, 11(1):43–76, 2018.

[3] Andrew W. Appel. Verified software toolchain. In Gilles Barthe,
editor, Programming Languages and Systems, pages 1–17, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[4] Jesús Aransay and Jose Divasón. Formalization and execution
of linear algebra: From theorems to algorithms. In Gopal Gupta
and Ricardo Peña, editors, Logic-Based Program Synthesis and
Transformation, pages 1–18, Cham, 2014. Springer International
Publishing.

[5] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alas-
tair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mund-
kur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur,
Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA seman-
tics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proc. 46th ACM
SIGPLAN Symposium on Principles of Programming Languages, Jan-
uary 2019. Proc. ACM Program. Lang. 3, POPL, Article 71.

[6] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and
Enrico Tassi. Hints in unification. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich,
Germany, August 17-20, 2009. Proceedings, pages 84–98, 2009.

[7] Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem
Proving in Lean. Carnegie Mellon University, 2014.

[8] Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn. Logic and
Proof. Carnegie Mellon University, 2017.

162 metamath zero: from logic, to proof assistant, to verified compiler

[9] Seulkee Baek. Reflected decision procedures in lean. Master’s
thesis, Carnegie Mellon University, 2019.

[10] Clemens Ballarin. Locales and locale expressions in isabelle/isar.
In Types for Proofs and Programs, International Workshop, TYPES
2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers,
pages 34–50, 2003.

[11] Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Ar-
tur Kornilowicz, Roman Matuszewski, Adam Naumowicz, and
Karol Pak. The role of the mizar mathematical library for in-
teractive proof development in mizar. J. Autom. Reasoning, 61(1-
4):9–32, 2018.

[12] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur
Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol
Pąk, and Josef Urban. Mizar: State-of-the-art and beyond.
In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian
Rabe, and Volker Sorge, editors, Intelligent Computer Mathemat-
ics, pages 261–279, Cham, 2015. Springer International Publish-
ing.

[13] Bruno Barras. Coq en coq. 1996.

[14] Bruno Barras. Sets in Coq, Coq in Sets. Journal of Formalized
Reasoning, 3(1):29–48, 2010.

[15] Bruno Barras and Benjamin Grégoire. On the Role of Type
Decorations in the Calculus of Inductive Constructions. In In-
ternational Workshop on Computer Science Logic, pages 151–166.
Springer, 2005.

[16] Bruno Barras and Benjamin Werner. Coq in Coq. Available on the
WWW, 1997.

[17] Stefan Berghofer and Tobias Nipkow. Proof terms for simply
typed higher order logic. In International Conference on Theorem
Proving in Higher Order Logics, pages 38–52. Springer, 2000.

[18] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

[19] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development: Coq’Art: The Calculus of Inductive Construc-
tions. Springer Science & Business Media, 2013.

bibliography 163

[20] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C.
Paulson. Extending sledgehammer with SMT solvers. J. Autom.
Reasoning, 51(1):109–128, 2013.

[21] Jasmin Christian Blanchette, Max W. Haslbeck, Daniel Matichuk,
and Tobias Nipkow. Mining the archive of formal proofs. In
Intelligent Computer Mathematics - International Conference, CICM
2015, Washington, DC, USA, July 13-17, 2015, Proceedings, pages
3–17, 2015.

[22] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paul-
son, and Josef Urban. Hammering towards QED. J. Formalized
Reasoning, 9(1):101–148, 2016.

[23] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Co-
quelicot: A user-friendly library of real analysis for coq. Mathe-
matics in Computer Science, 9(1):41–62, Mar 2015.

[24] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds,
and Andrew W Appel. Vst-floyd: A separation logic tool to
verify correctness of c programs. Journal of Automated Reasoning,
61(1-4):367–422, 2018.

[25] Mario Carneiro. Grammar ambiguity in set.mm. 2013.

[26] Mario Carneiro. Models for Metamath. presented at CICM 2016,
2016.

[27] Mario Carneiro. Metamath Zero: The Cartesian Theorem Prover.
preprint, 2019.

[28] Mario Carneiro. Specifying verified x86 software from scratch.
In Workshop on Instruction Set Architecture Specification, 2019.

[29] Alonzo Church. A Formulation of the Simple Theory of Types.
The journal of symbolic logic, 5(2):56–68, 1940.

[30] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
PhD thesis, INRIA, 1986.

[31] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis,
Vikram S. Adve, and Grigore Roşu. A Complete Formal Se-
mantics of x86-64 User-Level Instruction Set Architecture. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’19), pages 1133–1148.
ACM, June 2019.

[32] Jared Curran Davis and J Strother Moore. A self-verifying theorem
prover. PhD thesis, University of Texas, 2009.

164 metamath zero: from logic, to proof assistant, to verified compiler

[33] Leonardo de Moura, Jeremy Avigad, Soonho Kong, and Cody
Roux. Elaboration in Dependent Type Theory, 2015.

[34] Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching
for SMT solvers. In Automated Deduction - CADE-21, 21st Interna-
tional Conference on Automated Deduction, Bremen, Germany, July
17-20, 2007, Proceedings, pages 183–198, 2007.

[35] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris
Van Doorn, and Jakob von Raumer. The Lean Theorem Prover
(system description). In International Conference on Automated De-
duction, pages 378–388. Springer, 2015.

[36] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer. The Lean Theorem Prover (sys-
tem description), 2015.

[37] Peter Dybjer. Inductive Families. Formal aspects of computing,
6(4):440–465, 1994.

[38] R. Kent Dybvig. The SCHEME programming language. Mit Press,
2009.

[39] Maxime Dénès. Propositional extensionality is inconsistent in
Coq, Dec 2013.

[40] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad,
and Leonardo de Moura. A metaprogramming framework for
formal verification. PACMPL, 1(ICFP):34:1–34:29, 2017.

[41] Jordan S. Ellenberg and Dion Gijswijt. On large subsets of Fn
q

with no three-term arithmetic progression. Ann. of Math. (2),
185(1):339–343, 2017.

[42] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where
programs meet provers. In European symposium on programming,
pages 125–128. Springer, 2013.

[43] Gottlob Frege. Begriffsschrift, a formula language, modeled
upon that of arithmetic, for pure thought. From Frege to Gödel: A
source book in mathematical logic, 1931:1–82, 1879.

[44] M. Ganesalingam and W. T. Gowers. A fully automatic theorem
prover with human-style output. Journal of Automated Reasoning,
58(2):253–291, Feb 2017.

[45] François Garillot, Georges Gonthier, Assia Mahboubi, and Lau-
rence Rideau. Packaging mathematical structures. In Theo-
rem Proving in Higher Order Logics, 22nd International Conference,

bibliography 165

TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,
pages 327–342, 2009.

[46] Michèle Giry. A categorical approach to probability theory. In
Categorical aspects of topology and analysis (Ottawa, Ont., 1980), vol-
ume 915 of Lecture Notes in Math., pages 68–85. Springer, Berlin-
New York, 1982.

[47] Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords.
Verifying x86 instruction implementations. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, pages 47–60, 2020.

[48] Georges Gonthier. Point-free, set-free concrete linear algebra.
In Marko van Eekelen, Herman Geuvers, Julien Schmaltz, and
Freek Wiedijk, editors, Interactive Theorem Proving, pages 103–
118, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[49] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mah-
boubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A
machine-checked proof of the odd order theorem. In Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings, pages 163–179, 2013.

[50] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mah-
boubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A
machine-checked proof of the odd order theorem. In Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings, pages 163–179, 2013.

[51] Georges Gonthier and Assia Mahboubi. An introduction to
small scale reflection in coq. J. Formalized Reasoning, 3(2):95–152,
2010.

[52] Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz.
Mizar in a nutshell. Journal of Formalized Reasoning, 3(2):153–245,
2010.

[53] Adam Grabowski, Artur Kornilowicz, and Christoph
Schwarzweller. On algebraic hierarchies in mathematical
repository of mizar. In Proceedings of the 2016 Federated Confer-
ence on Computer Science and Information Systems, FedCSIS 2016,
Gdańsk, Poland, September 11-14, 2016., pages 363–371, 2016.

166 metamath zero: from logic, to proof assistant, to verified compiler

[54] Benjamin Grégoire and Assia Mahboubi. Proving equalities in
a commutative ring done right in Coq. In Joe Hurd and Tom
Melham, editors, Theorem Proving in Higher Order Logics, pages
98–113, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[55] Florian Haftmann. Code generation from isabelle/hol theories.

[56] Florian Haftmann and Makarius Wenzel. Constructive type
classes in isabelle. In International Workshop on Types for Proofs
and Programs, pages 160–174. Springer, 2006.

[57] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang,
John Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Ma-
gron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang
Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason M.
Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran,
Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller.
A formal proof of the kepler conjecture. CoRR, abs/1501.02155,
2015.

[58] Jesse Michael Han and Floris van Doorn. A Formalization of
Forcing and the Unprovability of the Continuum Hypothesis.
In John Harrison, John O’Leary, and Andrew Tolmach, editors,
10th International Conference on Interactive Theorem Proving (ITP
2019), volume 141 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 19:1–19:19, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[59] John Harrison. Towards self-verification of hol light. In Ulrich
Furbach and Natarajan Shankar, editors, Proceedings of the third
International Joint Conference, IJCAR 2006, volume 4130 of Lec-
ture Notes in Computer Science, pages 177–191, Seattle, WA, 2006.
Springer-Verlag.

[60] John Harrison. Hol light: An overview. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
Theorem Proving in Higher Order Logics, pages 60–66, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

[61] John Harrison. The HOL light theory of euclidean space. J.
Autom. Reasoning, 50(2):173–190, 2013.

[62] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, Oct 1969.

[63] William A Howard. The formulae-as-types notion of construc-
tion. To HB Curry: essays on combinatory logic, lambda calculus and
formalism, 44:479–490, 1980.

bibliography 167

[64] Hao Huang. Induced subgraphs of hypercubes and a proof of
the sensitivity conjecture. arXiv preprint arXiv:1907.00847, 2019.

[65] Fabian Immler and Bohua Zhan. Smooth manifolds and types
to sets for linear algebra in isabelle/hol. In Proceedings of the
8th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages
65–77, 2019.

[66] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. Rustbelt: Securing the foundations of the rust program-
ming language. Proceedings of the ACM on Programming Lan-
guages, 2(POPL):1–34, 2017.

[67] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Biz-
jak, Lars Birkedal, and Derek Dreyer. Iris from the ground up:
A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28, 2018.

[68] C. Kaliszyk and K. Pąk. Progress in the independent certifica-
tion of mizar mathematical library in isabelle. In 2017 Federated
Conference on Computer Science and Information Systems (FedCSIS),
pages 227–236, Sep. 2017.

[69] Cezary Kaliszyk, Karol Pąk, and Josef Urban. Towards a mizar
environment for isabelle: Foundations and language. In Proceed-
ings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2016, pages 58–65, New York, NY, USA, 2016. ACM.

[70] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson.
Locales - A sectioning concept for isabelle. In Theorem Proving
in Higher Order Logics, 12th International Conference, TPHOLs’99,
Nice, France, September, 1999, Proceedings, pages 149–166, 1999.

[71] M. Kaufmann, P. Manolios, and J.S. Moore. Computer-Aided
Reasoning: ACL2 Case Studies. Advances in Formal Methods.
Springer US, 2013.

[72] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O
Myreen. Software verification with ITPs should use binary code
extraction to reduce the TCB. In International Conference on Inter-
active Theorem Proving, pages 362–369. Springer, 2018.

[73] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. Cakeml: A verified implementation of ml. SIGPLAN
Not., 49(1):179–191, January 2014.

168 metamath zero: from logic, to proof assistant, to verified compiler

[74] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of
cc with predicative induction and judgmental equality. arXiv
preprint arXiv:1111.0123, 2011.

[75] Holden Lee. Vector spaces. Archive of Formal Proofs, 2014.
http://isa-afp.org/entries/VectorSpace.html, Formal proof
development.

[76] K Rustan M Leino. Dafny: An automatic program verifier for
functional correctness. In International Conference on Logic for
Programming Artificial Intelligence and Reasoning, pages 348–370.
Springer, 2010.

[77] Xavier Leroy et al. The compcert verified compiler. Documenta-
tion and user’s manual. INRIA Paris-Rocquencourt, 53, 2012.

[78] Pierre Letouzey. Extraction in Coq: An overview. In Conference
on Computability in Europe, pages 359–369. Springer, 2008.

[79] Robert Y. Lewis. An extensible ad hoc interface between lean
and mathematica. In Proceedings of the Fifth Workshop on Proof
eXchange for Theorem Proving, PxTP 2017, Brasília, Brazil, 23-24
September 2017., pages 23–37, 2017.

[80] Robert Y. Lewis. A formal proof of Hensel’s lemma over the
p-adic integers. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019, Cas-
cais, Portugal, January 14-15, 2019, pages 15–26, 2019.

[81] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O
Myreen, Michael Norrish, Oskar Abrahamsson, and Anthony
Fox. Verified compilation on a verified processor. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1041–1053. ACM, 2019.

[82] Zhaohui Luo. Ecc, an extended calculus of constructions. In
Logic in Computer Science, 1989. LICS’89, Proceedings., Fourth An-
nual Symposium on, pages 386–395. IEEE, 1989.

[83] Assia Mahboubi. The rooster and the butterflies. In Intelligent
Computer Mathematics - MKM, Calculemus, DML, and Systems and
Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12, 2013.
Proceedings, pages 1–18, 2013.

[84] Assia Mahboubi and Enrico Tassi. Mathematical Components,
2017.

[85] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative
Part. In Studies in Logic and the Foundations of Mathematics, vol-
ume 80, pages 73–118. Elsevier, 1975.

http://isa-afp.org/entries/VectorSpace.html

bibliography 169

[86] Per Martin-Löf. Constructive Mathematics and Computer Pro-
gramming. In Studies in Logic and the Foundations of Mathematics,
volume 104, pages 153–175. Elsevier, 1982.

[87] Simone Martini. Several types of types in programming lan-
guages. In International Conference on History and Philosophy of
Computing, pages 216–227. Springer, 2015.

[88] Norman Megill and David A. Wheeler. Metamath: A Computer
Language for Mathematical Proofs. Lulu Press, 2019.

[89] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[90] Alexandre Miquel and Benjamin Werner. The not so simple
proof-irrelevant model of cc. In International Workshop on Types
for Proofs and Programs, pages 240–258. Springer, 2002.

[91] Magnus O Myreen. Formal verification of machine-code pro-
grams. Technical report, University of Cambridge, Computer
Laboratory, 2009.

[92] Magnus O Myreen and Jared Davis. A verified runtime for a
verified theorem prover. In International Conference on Interactive
Theorem Proving, pages 265–280. Springer, 2011.

[93] Tobias Nipkow. Archive of formal proofs.

[94] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic, volume 2283.
Springer Science & Business Media, 2002.

[95] Ulf Norell. Dependently typed programming in Agda. In Inter-
national School on Advanced Functional Programming, pages 230–
266. Springer, 2008.

[96] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A
prototype verification system. In Automated Deduction - CADE-
11, 11th International Conference on Automated Deduction, Saratoga
Springs, NY, USA, June 15-18, 1992, Proceedings, pages 748–752,
1992.

[97] Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Kar-
byshev, and Mooly Sagiv. Decidability of inferring inductive
invariants. ACM SIGPLAN Notices, 51(1):217–231, 2016.

[98] Christine Paulin-Mohring. Introduction to the Calculus of In-
ductive Constructions, 2015.

170 metamath zero: from logic, to proof assistant, to verified compiler

[99] Frank Pfenning and Christine Paulin-Mohring. Inductively de-
fined types in the calculus of constructions. In Mathematical
Foundations of Programming Semantics, 5th International Confer-
ence, Tulane University, New Orleans, Louisiana, USA, March 29
- April 1, 1989, Proceedings, pages 209–228, 1989.

[100] Robert Pollack. Polishing up the tait-martin-löf proof of the
church-rosser theorem. 1995.

[101] William Pugh. The omega test: A fast and practical integer pro-
gramming algorithm for dependence analysis. In Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing, Supercomput-
ing ’91, pages 4–13, New York, NY, USA, 1991. ACM.

[102] Willard V Quine. New Foundations for Mathematical Logic. The
American mathematical monthly, 44(2):70–80, 1937.

[103] John C Reynolds. Intuitionistic reasoning about shared mu-
table data structure. Millennial perspectives in computer science,
2(1):303–321, 2000.

[104] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K
semantic framework. Journal of Logic and Algebraic Programming,
79(6):397–434, 2010.

[105] Claudio Sacerdoti Coen. A plugin to export coq libraries to
xml. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and
Claudio Sacerdoti Coen, editors, Intelligent Computer Mathemat-
ics, pages 243–257, Cham, 2019. Springer International Publish-
ing.

[106] Daniel Selsam, Percy Liang, and David L. Dill. Developing bug-
free machine learning systems with formal mathematics. In
Proceedings of the 34th International Conference on Machine Learn-
ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages
3047–3056, 2017.

[107] Daniel Selsam and Leonardo Moura. Congruence closure in in-
tensional type theory. In Proceedings of the 8th International Joint
Conference on Automated Reasoning - Volume 9706, pages 99–115,
Berlin, Heidelberg, 2016. Springer-Verlag.

[108] Konrad Slind and Michael Norrish. A brief overview of hol4. In
International Conference on Theorem Proving in Higher Order Logics,
pages 28–32. Springer, 2008.

[109] Konrad Slind and Michael Norrish. A brief overview of hol4.
In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, edi-
tors, Theorem Proving in Higher Order Logics, pages 28–32, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

bibliography 171

[110] Matthieu Sozeau, Yannick Forster, and Théo Winterhalter. Coq
coq correct!

[111] Bas Spitters and Eelis van der Weegen. Type classes for math-
ematics in type theory. Mathematical Structures in Computer Sci-
ence, 21(4):795–825, 2011.

[112] Ken Thompson et al. Reflections on trusting trust. Commun.
ACM, 27(8):761–763, 1984.

[113] Sebastian Ullrich and Leonardo de Moura. Counting immutable
beans: Reference counting optimized for purely functional pro-
gramming. IFL 19 (update this when proceedings are published),
2019.

[114] The Univalent Foundations Program. Homotopy Type
Theory: Univalent Foundations of Mathematics. https://

homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[115] Floris van Doorn. Constructing the propositional truncation us-
ing non-recursive hits. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, Saint Petersburg, FL,
USA, January 20-22, 2016, pages 122–129, 2016.

[116] Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Ho-
motopy type theory in lean. In Interactive Theorem Proving - 8th
International Conference, ITP 2017, Brasília, Brazil, September 26-29,
2017, Proceedings, pages 479–495, 2017.

[117] Jakob von Raumer. Formalizing double groupoids and cross
modules in the lean theorem prover. In Mathematical Software
- ICMS 2016 - 5th International Conference, Berlin, Germany, July
11-14, 2016, Proceedings, pages 28–33, 2016.

[118] Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad-hoc. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pages 60–76, 1989.

[119] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow.
The isabelle framework. In Theorem Proving in Higher Order Log-
ics, 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings, pages 33–38, 2008.

[120] Markus Wenzel. Type classes and overloading in higher-order
logic. In Theorem Proving in Higher Order Logics, 10th International
Conference, TPHOLs’97, Murray Hill, NJ, USA, August 19-22, 1997,
Proceedings, pages 307–322, 1997.

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

172 metamath zero: from logic, to proof assistant, to verified compiler

[121] Benjamin Werner. Sets in types, types in sets. In International
Symposium on Theoretical Aspects of Computer Software, pages 530–
546. Springer, 1997.

[122] Alfred North Whitehead and Bertrand Russell. Principia Mathe-
matica, volume 2. University Press, 1912.

[123] Freek Wiedijk. Pollack-inconsistency. Electronic Notes in Theoret-
ical Computer Science, 285:85–100, 2012.

[124] H. P. Williams. Fourier’s method of linear programming and its
dual. The American Mathematical Monthly, 93(9):681–695, 1986.

[125] Minchao Wu and Rajeev Goré. Verified Decision Procedures for
Modal Logics. In John Harrison, John O’Leary, and Andrew Tol-
mach, editors, 10th International Conference on Interactive Theorem
Proving (ITP 2019), volume 141 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 31:1–31:19, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

	How to trust a proof checker
	Bootstrap an existing proof language?
	Metamath Zero: The Logic
	Metamath
	Shortcomings of Metamath
	Bundling
	Strings vs trees
	Definitions

	MM0 primer
	The MM0 formal system
	Sorts
	Variables
	Abstract syntax
	Well-formedness
	The MM0 proof judgment
	The MM0 convertibility judgment

	The .mm0 specification format
	Sort modifiers
	No proofs
	Abstract definitions
	Local theorems and definitions
	Notation

	The .mmb binary proof file
	High level structure
	The declaration list
	Compilation

	Metamath One
	MM1 syntax
	Tactics
	MM1 tooling features

	Proof developments using MM1
	The peano.mm1 metaprogramming library
	peano.mm1: Peano arithmetic
	peano_hex.mm1: Hexadecimal arithmetic
	mm0.mm1: A formal specification of MM0
	x86.mm1: A formal specification of the Intel x86 ISA
	x86_determ.mm1: Determinism of the decode function
	separation_logic.mm1: Separation logic
	assembler-{old,new}.mm1: Assembler theorems (WIP)
	compiler-{old,new}.mm1: Compiler theorems (WIP)
	verifier.mm1: The bootstrap theorem

	Metamath C
	On verified programming
	A tour of Metamath C
	Procedures
	Functions
	Variables
	Tuples and destructuring
	Control flow
	Termination
	Integral types and operations
	Failure is always an option
	Ghost variables
	Casting, type punning, and truncation
	The empty type
	Separation logic types
	Pointers and arrays
	Mutable parameters
	Global variables and constants
	Type definitions

	Modeling MMC
	Hoare logic primer
	Separation logic
	The type context
	Toward a compositional program logic

	The Metamath C Compiler
	MIR in depth
	How proof generation works
	The assembly proof
	Global assembly
	Local assembly
	Assembling instructions

	The correctness proof
	The type context
	Block structure

	Executing statements
	Label groups and proof by induction
	Tying it all together
	Meta-analysis of the proof
	Infinite sets in PA
	Syntactic strings

	Looking ahead
	Applications
	MM0 as an interchange format

	Translating MM to MM0
	Translating MM0 to HOL systems
	Related work
	Bootstrapping theorem provers
	Code extraction
	ISA specification
	Program verification
	Verified compilers
	Verification frameworks
	Type soundness theorems

	Conclusion

	A contradiction in Metamath from grammar ambiguity
	The type system of MMC
	Syntax
	Typing
	Overview
	Moving types
	The Typing Rules
	Expression typing
	No-op steps
	Top level typing
	Uninitialized data
	Pointers
	Arrays

	Ghost propagation
	Ghost annotated types and tuple patterns
	The expression typing judgment
	Side effects

	Optimization and legalization
	Semantics
	Interpreting the context

	Bibliography

