
Metamath Zero
From Logic, to Proof Assistant, to Verified Compiler

Mario Carneiro

Carnegie Mellon University

June 13, 2022

1 / 45

Introduction to Metamath Zero

2 / 45

Proof as a social process

▶ Penny (the prover) is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor (the verifier) is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

This is a normal situation in mathematics. The usual process:
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.
▶ Victor reads the proof, and checks that each step contains no logical errors,

and thereby is convinced that T is true.

3 / 45

Proof as a social process

▶ Penny (the prover) is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor (the verifier) is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

This is a normal situation in mathematics. The usual process:
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.
▶ Victor reads the proof, and checks that each step contains no logical errors,

and thereby is convinced that T is true.

3 / 45

Proof as a social process

▶ Penny (the prover) is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor (the verifier) is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

This is a normal situation in mathematics. The usual process:
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.

▶ Victor reads the proof, and checks that each step contains no logical errors,
and thereby is convinced that T is true.

3 / 45

Proof as a social process

▶ Penny (the prover) is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor (the verifier) is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

This is a normal situation in mathematics. The usual process:
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.
▶ Victor reads the proof, and checks that each step contains no logical errors,

and thereby is convinced that T is true.

3 / 45

Proof as a social process

▶ Penny is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

(This is an idealization. Other ways this could play out:)
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.
▶ Victor decides that T is too unlikely to be true and Penny couldn’t possibly

have proved it, and ignores the proof.

4 / 45

Proof as a social process

▶ Penny is a mathematician.
They have just proved a big theorem T and want to share their work with the
world.

▶ Victor is a professor who is interested in Penny’s work.
They would like to be convinced of the truth of T.

(This is an idealization. Other ways this could play out:)
▶ Penny writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of T.
▶ Victor decides that Penny is trustworthy and does not read the proof very

carefully, and is convinced of T.

4 / 45

Proof as a social process

How can computers be used to facilitate this process?
1. Penny can use computers to feasibly build larger proofs.
2. Victor can use computers to feasibly check larger proofs.

(?)
(1) is certainly true, but it is not clear how to make (2) true.

▶ If Penny has a very large proof, the communication process can break down
because Victor will get tired

▶ How can Penny lift the burden on Victor and address the imbalance?

5 / 45

Proof as a social process

How can computers be used to facilitate this process?
1. Penny can use computers to feasibly build larger proofs.
2. Victor can use computers to feasibly check larger proofs. (?)

(1) is certainly true, but it is not clear how to make (2) true.

▶ If Penny has a very large proof, the communication process can break down
because Victor will get tired

▶ How can Penny lift the burden on Victor and address the imbalance?

5 / 45

Proof as a social process

How can computers be used to facilitate this process?
1. Penny can use computers to feasibly build larger proofs.
2. Victor can use computers to feasibly check larger proofs. (?)

(1) is certainly true, but it is not clear how to make (2) true.

▶ If Penny has a very large proof, the communication process can break down
because Victor will get tired

▶ How can Penny lift the burden on Victor and address the imbalance?

5 / 45

Proof as a social process

How can computers be used to facilitate this process?
1. Penny can use computers to feasibly build larger proofs.
2. Victor can use computers to feasibly check larger proofs. (?)

(1) is certainly true, but it is not clear how to make (2) true.

▶ If Penny has a very large proof, the communication process can break down
because Victor will get tired

▶ How can Penny lift the burden on Victor and address the imbalance?

5 / 45

Robo-Victor

Robo-Victor is just like Victor, except it’s a robot.

▶ It can read proofs carefully and ensure that there are no flaws in the proof.
▶ It never gets tired, and can work much faster than Victor.

It looks good. But:
▶ Robo-Victor isn’t Victor!
▶ Victor can watch Robo-Victor be convinced without themself being convinced

6 / 45

Robo-Victor

Robo-Victor is just like Victor, except it’s a robot.
▶ It can read proofs carefully and ensure that there are no flaws in the proof.

▶ It never gets tired, and can work much faster than Victor.

It looks good. But:
▶ Robo-Victor isn’t Victor!
▶ Victor can watch Robo-Victor be convinced without themself being convinced

6 / 45

Robo-Victor

Robo-Victor is just like Victor, except it’s a robot.
▶ It can read proofs carefully and ensure that there are no flaws in the proof.
▶ It never gets tired, and can work much faster than Victor.

It looks good. But:
▶ Robo-Victor isn’t Victor!
▶ Victor can watch Robo-Victor be convinced without themself being convinced

6 / 45

Robo-Victor

Robo-Victor is just like Victor, except it’s a robot.
▶ It can read proofs carefully and ensure that there are no flaws in the proof.
▶ It never gets tired, and can work much faster than Victor.

It looks good. But:

▶ Robo-Victor isn’t Victor!
▶ Victor can watch Robo-Victor be convinced without themself being convinced

6 / 45

Robo-Victor

Robo-Victor is just like Victor, except it’s a robot.
▶ It can read proofs carefully and ensure that there are no flaws in the proof.
▶ It never gets tired, and can work much faster than Victor.

It looks good. But:
▶ Robo-Victor isn’t Victor!
▶ Victor can watch Robo-Victor be convinced without themself being convinced

6 / 45

Proof as a social process: now with robots!

New strategy:
1. Penny writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to have no choice but to accept the truth of T.
2. Penny convinces Victor that Robo-Victor is a valid proof checker.
3. Victor reads the statement written in Robo-Victor’s language that determines

what Robo-Victor checked, and determines that this is in fact a way to write T.

7 / 45

Proof as a social process: now with robots!

New strategy:
1. Penny writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to have no choice but to accept the truth of T.
2. Penny convinces Victor that Robo-Victor is a valid proof checker.
3. Victor reads the statement written in Robo-Victor’s language that determines

what Robo-Victor checked, and determines that this is in fact a way to write T.

7 / 45

Proof as a social process: now with robots!

New strategy:
1. Penny writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to have no choice but to accept the truth of T.
2. Mario (the meta-prover) convinces Victor that Robo-Victor is a valid proof

checker.
3. Victor reads the statement written in Robo-Victor’s language that determines

what Robo-Victor checked, and determines that this is in fact a way to write T.

7 / 45

Proof as a social process: now with robots!

New strategy:

1. Penny writes a document in Robo-Victor’s language going through the logic of the
proof, leading Robo-Victor to have no choice but to accept the truth of T.

2. Mario convinces Victor that Robo-Victor is a valid proof checker.

3. Victor reads the statement written in Robo-Victor’s language that determines what
Robo-Victor checked, and determines that this is in fact a way to write T.

▶ Victor has two jobs now but it is still a lot less work than the original plan
since the hard part is being done by Robo-Victor

▶ Observation: Step 2 is a mathematical statement, that Robo-Victor (a
particular computer program) checks proofs according to some rules

8 / 45

Proof as a social process: now with robots!

New strategy:

1. Penny writes a document in Robo-Victor’s language going through the logic of the
proof, leading Robo-Victor to have no choice but to accept the truth of T.

2. Mario convinces Victor that Robo-Victor is a valid proof checker.

3. Victor reads the statement written in Robo-Victor’s language that determines what
Robo-Victor checked, and determines that this is in fact a way to write T.

▶ Victor has two jobs now but it is still a lot less work than the original plan
since the hard part is being done by Robo-Victor

▶ Observation: Step 2 is a mathematical statement, that Robo-Victor (a
particular computer program) checks proofs according to some rules

8 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” –
a self-referential foundation.

Proof of Step 2:
1. Mario writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to accept that “Robo-Victor is a valid proof
checker”.

2. Mario convinces Victor that Robo-Victor is a valid proof checker.
3. Victor reads the statement that Robo-Victor checked, and determines that this

is in fact a way to write “Robo-Victor is a valid proof checker”.
This is a circular argument though, so we need more:

9 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” –
a self-referential foundation.

Proof of Step 2:
1. Mario writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to accept that “Robo-Victor is a valid proof
checker”.

2. Mario convinces Victor that Robo-Victor is a valid proof checker.
3. Victor reads the statement that Robo-Victor checked, and determines that this

is in fact a way to write “Robo-Victor is a valid proof checker”.

This is a circular argument though, so we need more:

9 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” –
a self-referential foundation.

Proof of Step 2:
1. Mario writes a document in Robo-Victor’s language going through the logic

of the proof, leading Robo-Victor to accept that “Robo-Victor is a valid proof
checker”.

2. Mario convinces Victor that Robo-Victor is a valid proof checker.
3. Victor reads the statement that Robo-Victor checked, and determines that this

is in fact a way to write “Robo-Victor is a valid proof checker”.
This is a circular argument though, so we need more:

9 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” – a
self-referential foundation.

Proof of Step 2: (alternate)
1. Mario writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of
“Robo-Victor is a valid proof checker”.

2. Victor reads the proof, and checks that each step contains no logical errors,
and thereby is convinced that “Robo-Victor is a valid proof checker” is true.

That is, we can use the circular proof to bolster
“good old-fashioned” proof.

10 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” – a
self-referential foundation.

Proof of Step 2: (alternate)
1. Mario writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of
“Robo-Victor is a valid proof checker”.

2. Victor reads the proof, and checks that each step contains no logical errors,
and thereby is convinced that “Robo-Victor is a valid proof checker” is true.

That is, we can use the circular proof to bolster
“good old-fashioned” proof.

10 / 45

Bootstrapping

Bootstrapping refers to the idea of “picking oneself up by their bootstraps” – a
self-referential foundation.

Proof of Step 2: (alternate)
1. Mario writes a document in plain English going through the logic of the

proof, leading readers to have no choice but to accept the truth of
“Robo-Victor is a valid proof checker”.

2. Victor reads the proof, and checks that each step contains no logical errors,
and thereby is convinced that “Robo-Victor is a valid proof checker” is true.

That is, we can use the circular proof to bolster
“good old-fashioned” proof.

10 / 45

Summary

The goal of this project is to build Robo-Victor and prove that it has the desired
properties.

▶ Metamath Zero (MM0) is a specification language which allows you to write
theorem statements.

▶ The analogue of Robo-Victor is the MM0 verifier.

11 / 45

Summary

The goal of this project is to build Robo-Victor and prove that it has the desired
properties.

▶ Metamath Zero (MM0) is a specification language which allows you to write
theorem statements.

▶ The analogue of Robo-Victor is the MM0 verifier.

11 / 45

Summary

The goal of this project is to build Robo-Victor and prove that it has the desired
properties.

▶ Metamath Zero (MM0) is a specification language which allows you to write
theorem statements.

▶ The analogue of Robo-Victor is the MM0 verifier.

11 / 45

Introduction to Metamath C

12 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable

▶ Software correctness is increasingly important as people rely on software in
critical infrastructure

▶ Testing is only an incomplete solution, since checking all inputs is infeasible
for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure

▶ Testing is only an incomplete solution, since checking all inputs is infeasible
for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs

▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question

▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Software without bugs is possible

▶ Bugs in software are generally thought to be inevitable
▶ Software correctness is increasingly important as people rely on software in

critical infrastructure
▶ Testing is only an incomplete solution, since checking all inputs is infeasible

for most programs
▶ Software correctness is a mathematical question
▶ Software is a logical construct
▶ Software specifications are mathematical statements

→ Software correctness can be proved by mathematical proof (“deductive
verification”)

13 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!

▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle

▶ Those that do often only do so at a surface level, leaving users to trust the
programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language

▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Why doesn’t everyone do it?

It is too hard!
▶ Most programming languages don’t even support verification in principle
▶ Those that do often only do so at a surface level, leaving users to trust the

programming language
▶ Compilers have bugs too

▶ Even if the compiler is verified (most aren’t), it doesn’t help if the compiler
faithfully translates your bugs

▶ We need a language to help people write verified programs

Metamath C is a language for writing verified programs.

14 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

15 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

15 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ Simple structure
▶ Standalone verifier
▶ “small trusted kernel”

▶ MM1: The proof assistant – produces MM0 proofs
▶ Runs tactics and metaprograms and exports MM0 proofs

▶ MMC: A proof-producing compiler
▶ A programming language for producing (x86) programs with a proof of

correctness

15 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic

▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC

16 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler

▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC

16 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs

▶ The MM0 verifier is written in MMC

16 / 45

Metamath Zero Architecture

▶ MM0: The logic and specification language
▶ MM1: The proof assistant
▶ MMC: A proof-producing compiler

▶ We use MM1 to write proofs in the MM0 logic
▶ We use MM1 as a framework to run the MMC compiler
▶ The MMC compiler produces MM0 proofs
▶ The MM0 verifier is written in MMC

16 / 45

A simple MM0 file: propositional logic
delimiter $ (∼ $ $) $;

strict provable sort wff;

term im (a b: wff): wff; infixr im: $->$ prec 25;

term not (a: wff): wff; prefix not: $∼$ prec 40;

-- The Lukasiewicz axioms for propositional logic

axiom ax_1 (a b: wff): $ a -> b -> a $;

axiom ax_2 (a b c: wff):

$ (a -> b -> c) -> (a -> b) -> a -> c $;

axiom ax_3 (a b: wff):

$ (∼a -> ∼b) -> b -> a $;

axiom ax_mp (a b: wff):

$ a -> b $ >

$ a $ >

$ b $;

-- Assert that ‘P -> P‘ is provable

theorem id (P: wff): $ P -> P $;
17 / 45

Peano arithmetic
... -- predicate logic

--| The sort of natural numbers, or nonnegative integers.

sort nat;

--| ‘0‘ is a natural number.

term d0: nat; prefix d0: 0 prec max;

--| The successor operation: ‘suc n‘ is a natural number when ‘n‘ is.

term suc (n: nat): nat;

--| Zero is not a successor. Axiom 1 of Peano Arithmetic.

axiom sucne0 (a: nat): $ suc a != 0 $;

--| The successor function is injective. Axiom 2 of Peano Arithmetic.

axiom sucinj (a b: nat): $ suc a = suc b <-> a = b $;

--| The induction axiom of Peano Arithmetic. If ‘p(0)‘ is true,

--| and ‘p(x)‘ implies ‘p(suc x)‘ for all ‘x‘, then ‘p(x)‘ is true for all ‘x‘.

axiom induction {x: nat} (p: wff x):

$ [0 / x] p -> A. x (p -> [suc x / x] p) -> A. x p $;
18 / 45

Peano arithmetic
--| Addition of natural numbers, a primitive term constructor in PA.

term add (a b: nat): nat; infixl add: $+$ prec 64;

--| Multiplication of natural numbers, a primitive term constructor in PA.

term mul (a b: nat): nat; infixl mul: $*$ prec 70;

--| Addition respects equalty.

axiom addeq (a b c d: nat): $ a = b -> c = d -> a + c = b + d $;

--| Multiplication respects equalty.

axiom muleq (a b c d: nat): $ a = b -> c = d -> a * c = b * d $;

--| The base case in the definition of addition.

axiom add0 (a: nat): $ a + 0 = a $;

--| The successor case in the definition of addition.

axiom addS (a b: nat): $ a + suc b = suc (a + b) $;

--| The base case in the definition of multiplication.

axiom mul0 (a: nat): $ a * 0 = 0 $;

--| The successor case in the definition of multiplication.

axiom mulS (a b: nat): $ a * suc b = a * b + a $;

19 / 45

Peano arithmetic

▶ Peano arithmetic is a very simple axiomatic system, but also quite expressive

We define:

▶ Propositional logic
▶ Predicate logic
▶ Class theory
▶ +, −, ∗, /, mod, gcd
▶ even, odd, disjoint sums
▶ ordered pairs, cartesian product
▶ finite functions, class functions
▶ Integers: +, −, ∗, /, mod

▶ Bitwise operators
▶ Recursion, exponentiation
▶ Lists
▶ Set operators
▶ finite sets, finite set theory
▶ cardinality
▶ List ops: length, append, repeat,

reverse, map, join, filter, zip, . . .

20 / 45

Peano arithmetic

▶ Peano arithmetic is a very simple axiomatic system, but also quite expressive
We define:

▶ Propositional logic
▶ Predicate logic
▶ Class theory
▶ +, −, ∗, /, mod, gcd
▶ even, odd, disjoint sums
▶ ordered pairs, cartesian product
▶ finite functions, class functions
▶ Integers: +, −, ∗, /, mod

▶ Bitwise operators
▶ Recursion, exponentiation
▶ Lists
▶ Set operators
▶ finite sets, finite set theory
▶ cardinality
▶ List ops: length, append, repeat,

reverse, map, join, filter, zip, . . .

20 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme

do {

(display "hello world") -- hello world

{2 + 2} -- 4

(def x 5)

{x + x} -- 10

(def (f y) {y + y})

(f 3) -- 6

(def (fact x)

(if {x = 0}

1

{x * (fact {x - 1})}))

(fact 5) -- 120

};

21 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems

▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

22 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

22 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example

▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

22 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem

▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

22 / 45

Metaprogramming with MM1

▶ MM1 comes with a metaprogramming language based on Scheme
▶ We can use this to implement tactics to prove simple classes of theorems
▶ We can prove basic arithmetic theorems this way:

theorem _: $,19 * ,120 + ,2 = ,2282 $ = norm_num;

▶ theorem _ means it is an example
▶ norm_num is the tactic which proves the theorem
▶ ,19 calls a preprocessor to render 19 as a term. The actual theorem proved is:

theorem _: $ (x1 :x x3) * (x7 :x x8) + x2 = (x8 :x xe :x xa) $;

that is, 0x13 · 0x78 + 0x2 = 0x8ea which is the theorem written in hexadecimal

22 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers

▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics

▶ This requires a model of the registers, instruction pointer, flags, memory, page
permissions, exception state

▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state

▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system

▶ We focus mainly on the possible inputs and outputs of the program, for simple
console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)

23 / 45

Specifying x86
▶ x86-64 is the common name for Intel’s instruction set architecture (ISA) that

runs on most computers
▶ For this project I wrote down the specification of a decent chunk of x86-64

This involves:
▶ The way the CPU decodes instructions into: prefixes, opcode bytes, Mod/RM

and other operand bytes
▶ (This is approximately what an assembler does)

▶ The interpretation of each instruction into execution semantics
▶ This requires a model of the registers, instruction pointer, flags, memory, page

permissions, exception state
▶ To interpret IO, a model of the (Linux) operating system
▶ We focus mainly on the possible inputs and outputs of the program, for simple

console applications like the MM0 verifier

▶ The ELF file format (the linux equivalent of .exe)
23 / 45

Specifying MM0

▶ We also need a specification for MM0 itself, written in MM0

▶ This involves
▶ Parsing the input string into keywords like theorem, def, etc
▶ Parsing the math text like $ a + suc b = suc (a + b) $ into a structured

representation like (eq (add a (suc b)) (suc (add a b)))
▶ Describing the underlying proof system, how theorems are proved from axioms

▶ Describing how full files are put together from definitions and theorems

p-thm
(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]

∀i j x, Γ′i = x < VΓ′(Γ′j)→ ei < FVΓ(ej)

⊢ B[Γ′ 7→ e]

24 / 45

Specifying MM0

▶ We also need a specification for MM0 itself, written in MM0
▶ This involves
▶ Parsing the input string into keywords like theorem, def, etc

▶ Parsing the math text like $ a + suc b = suc (a + b) $ into a structured
representation like (eq (add a (suc b)) (suc (add a b)))

▶ Describing the underlying proof system, how theorems are proved from axioms

▶ Describing how full files are put together from definitions and theorems

p-thm
(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]

∀i j x, Γ′i = x < VΓ′(Γ′j)→ ei < FVΓ(ej)

⊢ B[Γ′ 7→ e]

24 / 45

Specifying MM0

▶ We also need a specification for MM0 itself, written in MM0
▶ This involves
▶ Parsing the input string into keywords like theorem, def, etc
▶ Parsing the math text like $ a + suc b = suc (a + b) $ into a structured

representation like (eq (add a (suc b)) (suc (add a b)))

▶ Describing the underlying proof system, how theorems are proved from axioms

▶ Describing how full files are put together from definitions and theorems

p-thm
(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]

∀i j x, Γ′i = x < VΓ′(Γ′j)→ ei < FVΓ(ej)

⊢ B[Γ′ 7→ e]

24 / 45

Specifying MM0

▶ We also need a specification for MM0 itself, written in MM0
▶ This involves
▶ Parsing the input string into keywords like theorem, def, etc
▶ Parsing the math text like $ a + suc b = suc (a + b) $ into a structured

representation like (eq (add a (suc b)) (suc (add a b)))
▶ Describing the underlying proof system, how theorems are proved from axioms

▶ Describing how full files are put together from definitions and theorems

p-thm
(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]

∀i j x, Γ′i = x < VΓ′(Γ′j)→ ei < FVΓ(ej)

⊢ B[Γ′ 7→ e]

24 / 45

Specifying MM0

▶ We also need a specification for MM0 itself, written in MM0
▶ This involves
▶ Parsing the input string into keywords like theorem, def, etc
▶ Parsing the math text like $ a + suc b = suc (a + b) $ into a structured

representation like (eq (add a (suc b)) (suc (add a b)))
▶ Describing the underlying proof system, how theorems are proved from axioms
▶ Describing how full files are put together from definitions and theorems

p-thm
(Γ′; A ⊢ B) ∈ E Γ ⊢ e :: Γ′ ∀i, ⊢ Ai[Γ′ 7→ e]

∀i j x, Γ′i = x < VΓ′(Γ′j)→ ei < FVΓ(ej)

⊢ B[Γ′ 7→ e]

24 / 45

The correctness theorem

▶ This is everything we need to state the correctness theorem for a verifier:

Functional correctness for a verifier
Program P is a correct theorem prover if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I, then
I is a valid and provable MM0 file.

▶ Red: definitions from x86.mm0

▶ Blue: definitions from mm0.mm0

25 / 45

The correctness theorem

▶ This is everything we need to state the correctness theorem for a verifier:

Functional correctness for a verifier
Program P is a correct theorem prover if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I, then
I is a valid and provable MM0 file.

▶ Red: definitions from x86.mm0

▶ Blue: definitions from mm0.mm0

25 / 45

Metamath C

▶ Most of this theorem is generic over all programs, not just MM0 verifiers:

Correctness, generalized

Program P is correct to specification T if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I and
output_produced(s′) = O, then T(I,O) is true.

▶ The Metamath C compiler produces theorems of this form.

26 / 45

Metamath C

▶ Most of this theorem is generic over all programs, not just MM0 verifiers:

Correctness, generalized

Program P is correct to specification T if for every initial state s ∈ init(P), all
nondeterministic evaluations do not cause undefined behavior, and after reaching
a final state s⇝∗ s′, if s′ is a successful exit state and input_consumed(s′) = I and
output_produced(s′) = O, then T(I,O) is true.

▶ The Metamath C compiler produces theorems of this form.

26 / 45

Metamath C

▶ MMC is not a “general-purpose” programming language
▶ Someday, it can hope to be about as general purpose as C or Rust, but this is a

gargantuan effort for many reasons

▶ The niche MMC fills is writing executable programs which provably satisfy
some condition

▶ Most programs don’t need this property, but correctness is important to some
degree in almost every program, and (approximate) type correctness is
mainstream

27 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable

▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs

▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism

▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types

▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types

▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking

▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects

▶ Metamath C
A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Type system→ static analysis→ theorem prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable
▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects
▶ Metamath C

A type checker is just a simple theorem prover; the study of one naturally leads to
the other

28 / 45

Examples: Procedures

▶ This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {

return (x + y) as u32;

}

▶ Supports multiple returns and dependent types for writing preconditions and
postconditions

proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)

}

29 / 45

Examples: Procedures

▶ This is a function that takes two 32 bit integers and returns their sum,
wrapped to 32 bits

proc add2(x: u32, y: u32): u32 {

return (x + y) as u32;

}

▶ Supports multiple returns and dependent types for writing preconditions and
postconditions

proc deptypes(x: u32, _: x = 0): y: u32, sn((x + y) as u32) {

1, sn((x + 1) as u32)

}

29 / 45

Examples: Tuples and pattern matching

▶ This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(1), sn(2) {

let x: (nat, nat) := (1, 2);

let (one, two) := x;

sn(one), sn(two)

}

30 / 45

Examples: Tuples and pattern matching

▶ This function constructs and destructs some tuples. The sn(1), sn(2) return
type says that this function returns exactly the values 1 and 2

proc tuples(): sn(1), sn(2) {

let x: (nat, nat) := (1, 3); // <- changed 2 to 3

let (one, two) := x;

sn(one), sn(two) // type error!

}

31 / 45

Examples: Control flow

▶ After an if statement, you can capture the property’s truth value in a variable:

proc if_statement(x: nat) {

if h: x < 10 {

// x: nat, h: x < 10

} else {

// x: nat, h: ∼(x < 10)

}

}

32 / 45

Examples: Control flow

▶ While loops and assignment:

proc while_loop() {

let b := true;

let h2 := while h: b {

// h: b

b <- false;

};

// h2: ∼b

}

33 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:

▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)

▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result

▶ (x + y): u32: make the type checker prove it is in range (usually only works if
the values of x and y are known)

▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)

▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Examples: Numeric types

▶ There are various fixed size integral types, as well as unbounded integer types

τ ::= u8 | u16 | u32 | u64 | nat | i8 | i16 | i32 | i64 | int | . . .

▶ Numeric operations yield their exact untruncated value, so the user must
decide how to cast the value back into range:
▶ (x + y): nat: don’t truncate at all (this can only be used in limited ways)
▶ (x + y) as u32: wrap the result
▶ (x + y): u32: make the type checker prove it is in range (usually only works if

the values of x and y are known)
▶ cast(x + y, h): u32: prove that x + y < 232

▶ cast(x + y): u32: assert that x + y < 232 and crash otherwise

34 / 45

Separation logic

MMC’s type system includes the basic primitives of separation logic, for expressing
complex properties:

Type Concrete syntax Typehood predicate a : − Meaning
∃x : τ1, τ2(x) (ex x: τ1, τ2(x)) ∃x : τ1, a : τ2(x) Existential quantification

∀x : τ1, τ2(x) all x: τ1. τ2(x) ∀x : τ1, a : τ2(x) Universal quantification
τ1 → τ2 τ1 -> τ2 a : τ1 → a : τ2 Non-separating implication
τ1 −∗ τ2 τ1 -* τ2 a : τ1 −∗ a : τ1 Separating imp. (magic wand)
τ1 ∧ τ2 τ1 && τ2 a : τ1 ∧ a : τ2 Non-separating conjunction
τ1 ∗ τ2 (τ1, τ2) a.0 : τ1 ∗ a.1 : τ2 Separating conjunction
τ1 ∨ τ2 τ1 || τ2 a : τ1 ∨ a : τ2 Disjunction
¬τ ∼τ1 ¬ a : τ Negation
ℓ 7→ v ℓ |-> v ℓ 7→ v Points-to assertion
e : τ [e: τ] e : τ Typing assertion
|τ| moved(τ)

∣∣∣ a : τ
∣∣∣ Persistent core of τ

35 / 45

The main function

▶ The theorem to be proved by the MMC compiler depends on the return type
of the main() function:

proc main(): collatz_conjecture {

// if this program succeeds, then the collatz conjecture is true

assert(false) // ...not that I know how to write such a program!

}

36 / 45

The Metamath C compiler

▶ The full language has many features, and it is designed to be proof producing
from day 1

▶ We have to lower all this, while preserving proofs along the way

▶ Note: the MMC compiler is not a “verified compiler” in the sense of
CompCert
▶ There is a single theorem that asserts that CompCert compiles any C program

according to the C spec
▶ The MMC compiler instead produces a proof on the fly that your program meets

your spec

37 / 45

The Metamath C compiler

▶ The full language has many features, and it is designed to be proof producing
from day 1

▶ We have to lower all this, while preserving proofs along the way
▶ Note: the MMC compiler is not a “verified compiler” in the sense of

CompCert
▶ There is a single theorem that asserts that CompCert compiles any C program

according to the C spec
▶ The MMC compiler instead produces a proof on the fly that your program meets

your spec

37 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:

▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)

▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST

▶ The AST is typechecked and translated into HIR (higher-level intermediate
representation), type errors are reported

▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported

▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation

▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks

▶ Ghost analysis determines which variables only need to exist in the proof
without any machine representation

▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation

▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

Most of it looks familiar to compiler writers:
▶ The input is parsed into an abstract syntax tree (AST)
▶ The AST is desugared into a simpler AST
▶ The AST is typechecked and translated into HIR (higher-level intermediate

representation), type errors are reported
▶ The HIR is lowered to MIR, a basic block representation
▶ Several optimization passes are run on MIR:
▶ Reachability analysis to remove dead blocks
▶ Ghost analysis determines which variables only need to exist in the proof

without any machine representation
▶ Legalization tries to remove any nat intermediates

38 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

▶ A “monomorphization” pass is run to find out which type instantiations of
which functions need to exist in the final binary

▶ For each monomorphized function, we determine the stack frame layout,
based on the intermediates that exist in the function

▶ The monomorphized MIR is lowered to VCode (virtual-register code)
representation, which is an architecture-dependent IR which looks like x86

▶ The register allocator produces PCode (physical-register code), which looks
like assembly

▶ Branch displacement optimization (BDO) determines which jumps can use
the short form

▶ The instructions are assembled into bytes, and the ELF header is added

39 / 45

The Metamath C compiler

A regular compiler would stop there. We have a few more steps to go:

▶ We first re-assemble the emitted byte stream back into the PCode
representation, but generating a “proof of assembly” along the way

▶ MIR has a proper type system, while PCode maintains a mapping to the bytes
and also to the MIR. So we go over each function, and produce a proof of
correctness relative to the reconstructed assembly.

40 / 45

The Metamath C compiler

A regular compiler would stop there. We have a few more steps to go:
▶ We first re-assemble the emitted byte stream back into the PCode

representation, but generating a “proof of assembly” along the way

▶ MIR has a proper type system, while PCode maintains a mapping to the bytes
and also to the MIR. So we go over each function, and produce a proof of
correctness relative to the reconstructed assembly.

40 / 45

The Metamath C compiler

A regular compiler would stop there. We have a few more steps to go:
▶ We first re-assemble the emitted byte stream back into the PCode

representation, but generating a “proof of assembly” along the way
▶ MIR has a proper type system, while PCode maintains a mapping to the bytes

and also to the MIR. So we go over each function, and produce a proof of
correctness relative to the reconstructed assembly.

40 / 45

The Metamath C compiler: The assembly proof

An example assembly theorem, which parses binary operations involving a
register and intermediate argument, like add rax, 1 (which does RAX += 1 where
RAX is one of the general purpose registers):

inst-binop-imm
split1,3(y) = v, 0 opSizeW(rex?, v) = sz parseModRM(rex?, s)⇒ opc, reg dst, s′

parseImm(sz, s′)⇒ src parseBinop(opc, sz, dst, imm32 src)⇒ I

(8 y) s @ p, ip, rex?
⇒ I inst

41 / 45

The Metamath C compiler: The assembly proof

Some example correctness theorems:

code-seq
B ⊢ {T0} A1 {T1}

B ⊢ {T1} A2 {T2}

B ⊢ {T0} (A1; A2) {T2}

code-mov-rr
read(T , reg src)⇒ v

write(T , reg dst, v)⇒ T ′

B ⊢ {T } (mov.64 dst src) {T ′}

block-i
B ⊢ A @ n lasm
B ⊢ {T } A {⊥}

B ⊢ block(T) @ n

code-jcc
insert(T , τ)⇒ T1 insert(T ,¬τ)⇒ T2

flagCond(f , cond)⇒ τ B ⊢ block(T1) @ tgt

B ⊢ {withFlag(f ,T)} (jcc cond tgt) {T2}

42 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf

▶ The procedure context P adds the return type of the current procedure and
whether side effects are legal in this function

▶ The block context B adds the set of blocks corresponding to back-edges in the
control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope
▶ The machine contextM has the assignment of registers and stack values in

terms of the variables
▶ The type context T = (V,M) is used as pre- and post-conditions for assembly

sequences

43 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf
▶ The procedure context P adds the return type of the current procedure and

whether side effects are legal in this function

▶ The block context B adds the set of blocks corresponding to back-edges in the
control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope
▶ The machine contextM has the assignment of registers and stack values in

terms of the variables
▶ The type context T = (V,M) is used as pre- and post-conditions for assembly

sequences

43 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf
▶ The procedure context P adds the return type of the current procedure and

whether side effects are legal in this function
▶ The block context B adds the set of blocks corresponding to back-edges in the

control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope
▶ The machine contextM has the assignment of registers and stack values in

terms of the variables
▶ The type context T = (V,M) is used as pre- and post-conditions for assembly

sequences

43 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf
▶ The procedure context P adds the return type of the current procedure and

whether side effects are legal in this function
▶ The block context B adds the set of blocks corresponding to back-edges in the

control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope

▶ The machine contextM has the assignment of registers and stack values in
terms of the variables

▶ The type context T = (V,M) is used as pre- and post-conditions for assembly
sequences

43 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf
▶ The procedure context P adds the return type of the current procedure and

whether side effects are legal in this function
▶ The block context B adds the set of blocks corresponding to back-edges in the

control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope
▶ The machine contextM has the assignment of registers and stack values in

terms of the variables

▶ The type context T = (V,M) is used as pre- and post-conditions for assembly
sequences

43 / 45

The Metamath C compiler: The correctness proof

These theorems have to juggle a lot of state.
▶ The global context G contains the main specification T and the ELF file elf
▶ The procedure context P adds the return type of the current procedure and

whether side effects are legal in this function
▶ The block context B adds the set of blocks corresponding to back-edges in the

control flow (like while loops) which require a variant specification because
they are in the middle of an inductive proof

▶ The variable contextV has the values and types of variables that are in scope
▶ The machine contextM has the assignment of registers and stack values in

terms of the variables
▶ The type context T = (V,M) is used as pre- and post-conditions for assembly

sequences

43 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs
▶ The assembly proof generator is complete
▶ The correctness proof generator is not yet complete

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs
▶ The assembly proof generator is complete
▶ The correctness proof generator is not yet complete

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs

▶ The assembly proof generator is complete
▶ The correctness proof generator is not yet complete

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs
▶ The assembly proof generator is complete

▶ The correctness proof generator is not yet complete
It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs
▶ The assembly proof generator is complete
▶ The correctness proof generator is not yet complete

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

The current state of the project

▶ There are several MM0 verifiers, written in C, Rust, Haskell, and some plans
for the MMC verifier which are waiting for the compiler to catch up

▶ The MM1 proof assistant is fairly stable and has already been used for some
pretty big formalization work

▶ The MMC compiler is mostly working for generating executable programs
▶ The assembly proof generator is complete
▶ The correctness proof generator is not yet complete

It is still a research project at this point, but I have every intention to grow this to
an industrial strength project eventually.

44 / 45

Conclusion

▶ The MMC language design is unlike any I have seen, and I think there is a real
need for it.

▶ It still remains to be seen if it is actually usable in practice, but it could be a
game-changer, bringing the task of writing formally verified programs down
to the level of the average proof assistant user.

▶ The self-verification of MM0 will set a new standard for what formal
verification is really capable of, and my ultimate goal is to get all major
theorem provers verified either directly or by translation to MM0 (or another
verified language).

Github: https://github.com/digama0/mm0
Thesis: https://digama0.github.io/mm0/thesis.pdf

45 / 45

https://github.com/digama0/mm0
https://digama0.github.io/mm0/thesis.pdf

	Introduction

