theorem zleeq1 (_m1 _m2 n: nat): $ _m1 = _m2 -> (_m1 <=Z n <-> _m2 <=Z n) $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | id | _m1 = _m2 -> _m1 = _m2 | 
        
          | 2 | 1 | zleeq1d | _m1 = _m2 -> (_m1 <=Z n <-> _m2 <=Z n) | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)