Theorem xppi221 | index | src |

theorem xppi221 (A B C D: set) (a: nat):
  $ a e. Xp A (Xp B (Xp C D)) -> pi221 a e. C $;
StepHypRefExpression
1 xppi22
a e. Xp A (Xp B (Xp C D)) -> pi22 a e. Xp C D
2 xpfst
pi22 a e. Xp C D -> fst (pi22 a) e. C
3 2 conv pi221
pi22 a e. Xp C D -> pi221 a e. C
4 1, 3 rsyl
a e. Xp A (Xp B (Xp C D)) -> pi221 a e. C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)