theorem xppi221 (A B C D: set) (a: nat):
  $ a e. Xp A (Xp B (Xp C D)) -> pi221 a e. C $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          xppi22 | 
          a e. Xp A (Xp B (Xp C D)) -> pi22 a e. Xp C D  | 
        
        
          | 2 | 
           | 
          xpfst | 
          pi22 a e. Xp C D -> fst (pi22 a) e. C  | 
        
        
          | 3 | 
          2 | 
          conv pi221 | 
          pi22 a e. Xp C D -> pi221 a e. C  | 
        
        
          | 4 | 
          1, 3 | 
          rsyl | 
          a e. Xp A (Xp B (Xp C D)) -> pi221 a e. C  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)