Theorem truemul | index | src |

theorem truemul (a b: nat): $ true (a * b) <-> true a /\ true b $;
StepHypRefExpression
1 mulne0
a * b != 0 <-> a != 0 /\ b != 0
2 1 conv true
true (a * b) <-> true a /\ true b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)