Theorem sylbid | index | src |

theorem sylbid (a b c d: wff):
  $ a -> (b <-> c) $ >
  $ a -> c -> d $ >
  $ a -> b -> d $;
StepHypRefExpression
1 hyp h1
a -> (b <-> c)
2 1 bi1d
a -> b -> c
3 hyp h2
a -> c -> d
4 2, 3 syld
a -> b -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)