theorem splitpr (G: wff) (a: nat) (p: wff) {x y: nat}:
$ G -> a = x, y -> p $ >
$ G -> p $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expr | E. x E. y a = x, y |
|
| 2 | hyp h | G -> a = x, y -> p |
|
| 3 | 2 | eexd | G -> E. y a = x, y -> p |
| 4 | 3 | eexd | G -> E. x E. y a = x, y -> p |
| 5 | 1, 4 | mpi | G -> p |