Theorem snoceq | index | src |

theorem snoceq (_l1 _l2 _a1 _a2: nat):
  $ _l1 = _l2 -> _a1 = _a2 -> _l1 |> _a1 = _l2 |> _a2 $;
StepHypRefExpression
1 anl
_l1 = _l2 /\ _a1 = _a2 -> _l1 = _l2
2 anr
_l1 = _l2 /\ _a1 = _a2 -> _a1 = _a2
3 1, 2 snoceqd
_l1 = _l2 /\ _a1 = _a2 -> _l1 |> _a1 = _l2 |> _a2
4 3 exp
_l1 = _l2 -> _a1 = _a2 -> _l1 |> _a1 = _l2 |> _a2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)