Theorem snocS | index | src |

pub theorem snocS (a b c: nat): $ a : b |> c = a : (b |> c) $;
StepHypRefExpression
1 appendS
a : b ++ c : 0 = a : (b ++ c : 0)
2 1 conv snoc
a : b |> c = a : (b |> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)