Theorem shrss | index | src |

theorem shrss (a b n: nat): $ a C_ b -> shr a n C_ shr b n $;
StepHypRefExpression
1 elshr
x e. shr a n <-> x + n e. a
2 elshr
x e. shr b n <-> x + n e. b
3 ssel
a C_ b -> x + n e. a -> x + n e. b
4 2, 3 syl6ibr
a C_ b -> x + n e. a -> x e. shr b n
5 1, 4 syl5bi
a C_ b -> x e. shr a n -> x e. shr b n
6 5 iald
a C_ b -> A. x (x e. shr a n -> x e. shr b n)
7 6 conv subset
a C_ b -> shr a n C_ shr b n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)