Theorem rlreceq3 | index | src |

theorem rlreceq3 (z: nat) (S: set) (_n1 _n2: nat):
  $ _n1 = _n2 -> rlrec z S _n1 = rlrec z S _n2 $;
StepHypRefExpression
1 id
_n1 = _n2 -> _n1 = _n2
2 1 rlreceq3d
_n1 = _n2 -> rlrec z S _n1 = rlrec z S _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)