Theorem reveq0 | index | src |

theorem reveq0 (l: nat): $ rev l = 0 <-> l = 0 $;
StepHypRefExpression
1 bitr3
(rev l = rev 0 <-> rev l = 0) -> (rev l = rev 0 <-> l = 0) -> (rev l = 0 <-> l = 0)
2 eqeq2
rev 0 = 0 -> (rev l = rev 0 <-> rev l = 0)
3 rev0
rev 0 = 0
4 2, 3 ax_mp
rev l = rev 0 <-> rev l = 0
5 1, 4 ax_mp
(rev l = rev 0 <-> l = 0) -> (rev l = 0 <-> l = 0)
6 revinj
rev l = rev 0 <-> l = 0
7 5, 6 ax_mp
rev l = 0 <-> l = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)