theorem reveq0 (l: nat): $ rev l = 0 <-> l = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(rev l = rev 0 <-> rev l = 0) -> (rev l = rev 0 <-> l = 0) -> (rev l = 0 <-> l = 0) |
2 |
|
eqeq2 |
rev 0 = 0 -> (rev l = rev 0 <-> rev l = 0) |
3 |
|
rev0 |
rev 0 = 0 |
4 |
2, 3 |
ax_mp |
rev l = rev 0 <-> rev l = 0 |
5 |
1, 4 |
ax_mp |
(rev l = rev 0 <-> l = 0) -> (rev l = 0 <-> l = 0) |
6 |
|
revinj |
rev l = rev 0 <-> l = 0 |
7 |
5, 6 |
ax_mp |
rev l = 0 <-> l = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)