theorem recnaux0 (S: set) (z: nat): $ recnaux z S 0 = 0, z $;
Step | Hyp | Ref | Expression |
1 |
|
rec0 |
rec (0, z) (\ a1, suc (fst a1), S @ a1) 0 = 0, z |
2 |
1 |
conv recnaux |
recnaux z S 0 = 0, z |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)