Theorem pimex | index | src |

theorem pimex {x: nat} (p q: wff x): $ (P. x p -> q) -> E. x p $;
StepHypRefExpression
1 anl
E. x p /\ A. x (p -> q) -> E. x p
2 1 conv pim
(P. x p -> q) -> E. x p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)