theorem ocasepeq2d (_G z: wff) (_S1 _S2: set): $ _G -> _S1 == _S2 $ > $ _G -> ocasep z _S1 == ocasep z _S2 $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biidd | _G -> (z <-> z) | |
| 2 | hyp _h | _G -> _S1 == _S2 | |
| 3 | 1, 2 | ocasepeqd | _G -> ocasep z _S1 == ocasep z _S2 |