Theorem ocasepeq2d | index | src |

theorem ocasepeq2d (_G z: wff) (_S1 _S2: set):
  $ _G -> _S1 == _S2 $ >
  $ _G -> ocasep z _S1 == ocasep z _S2 $;
StepHypRefExpression
1 biidd
_G -> (z <-> z)
2 hyp _h
_G -> _S1 == _S2
3 1, 2 ocasepeqd
_G -> ocasep z _S1 == ocasep z _S2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)