theorem neeq2 (a _b1 _b2: nat): $ _b1 = _b2 -> (a != _b1 <-> a != _b2) $;
Step | Hyp | Ref | Expression |
1 |
|
id |
_b1 = _b2 -> _b1 = _b2 |
2 |
1 |
neeq2d |
_b1 = _b2 -> (a != _b1 <-> a != _b2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7)