Theorem
mti
≪
|
index
|
src
|
≫
theorem mti (a b c: wff): $ ~b $ > $ a -> c -> b $ > $ a -> ~c $;
Step
Hyp
Ref
Expression
1
hyp h1
~b
2
1
a1i
a -> ~b
3
hyp h2
a -> c -> b
4
2
,
3
mtd
a -> ~c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)