Theorem
mt2
≪
|
index
|
src
|
≫
theorem mt2 (a b: wff): $ b -> ~a $ > $ a $ > $ ~b $;
Step
Hyp
Ref
Expression
1
con2
(b -> ~a) -> a -> ~b
2
hyp h1
b -> ~a
3
1
,
2
ax_mp
a -> ~b
4
hyp h2
a
5
3
,
4
ax_mp
~b
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)