Theorem listfnS0 | index | src |

theorem listfnS0 (a l: nat): $ listfn (a : l) @ 0 = a $;
StepHypRefExpression
1 eqtr
listfn (a : l) @ 0 = if (0 = 0) a (listfn l @ (0 - 1)) -> if (0 = 0) a (listfn l @ (0 - 1)) = a -> listfn (a : l) @ 0 = a
2 listfnSval
0 < suc (len l) -> listfn (a : l) @ 0 = if (0 = 0) a (listfn l @ (0 - 1))
3 lt01S
0 < suc (len l)
4 2, 3 ax_mp
listfn (a : l) @ 0 = if (0 = 0) a (listfn l @ (0 - 1))
5 1, 4 ax_mp
if (0 = 0) a (listfn l @ (0 - 1)) = a -> listfn (a : l) @ 0 = a
6 ifpos
0 = 0 -> if (0 = 0) a (listfn l @ (0 - 1)) = a
7 eqid
0 = 0
8 6, 7 ax_mp
if (0 = 0) a (listfn l @ (0 - 1)) = a
9 5, 8 ax_mp
listfn (a : l) @ 0 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)