theorem ifpeq3d (_G p a _b1 _b2: wff): $ _G -> (_b1 <-> _b2) $ > $ _G -> (ifp p a _b1 <-> ifp p a _b2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | _G -> (p <-> p) |
|
2 | biidd | _G -> (a <-> a) |
|
3 | hyp _h | _G -> (_b1 <-> _b2) |
|
4 | 1, 2, 3 | ifpeqd | _G -> (ifp p a _b1 <-> ifp p a _b2) |