theorem ifpeq2d (_G p _a1 _a2 b: wff): $ _G -> (_a1 <-> _a2) $ > $ _G -> (ifp p _a1 b <-> ifp p _a2 b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | _G -> (p <-> p) |
|
2 | hyp _h | _G -> (_a1 <-> _a2) |
|
3 | biidd | _G -> (b <-> b) |
|
4 | 1, 2, 3 | ifpeqd | _G -> (ifp p _a1 b <-> ifp p _a2 b) |