Theorem iexdde | index | src |

theorem iexdde {x: nat} (G b: wff) (a: nat) (c: wff x):
  $ G /\ x = a -> b -> c $ >
  $ G -> b -> E. x c $;
StepHypRefExpression
1 hyp e
G /\ x = a -> b -> c
2 1 exp
G -> x = a -> b -> c
3 2 com23
G -> b -> x = a -> c
4 3 imp
G /\ b -> x = a -> c
5 4 imp
G /\ b /\ x = a -> c
6 5 iexde
G /\ b -> E. x c
7 6 exp
G -> b -> E. x c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)