theorem iexdde {x: nat} (G b: wff) (a: nat) (c: wff x):
$ G /\ x = a -> b -> c $ >
$ G -> b -> E. x c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp e | G /\ x = a -> b -> c |
|
| 2 | 1 | exp | G -> x = a -> b -> c |
| 3 | 2 | com23 | G -> b -> x = a -> c |
| 4 | 3 | imp | G /\ b -> x = a -> c |
| 5 | 4 | imp | G /\ b /\ x = a -> c |
| 6 | 5 | iexde | G /\ b -> E. x c |
| 7 | 6 | exp | G -> b -> E. x c |