Theorem greceq5 | index | src |

theorem greceq5 (z: nat) (K F: set) (n _k1 _k2: nat):
  $ _k1 = _k2 -> grec z K F n _k1 = grec z K F n _k2 $;
StepHypRefExpression
1 id
_k1 = _k2 -> _k1 = _k2
2 1 greceq5d
_k1 = _k2 -> grec z K F n _k1 = grec z K F n _k2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)