Theorem grecaux2eq5 | index | src |

theorem grecaux2eq5 (z: nat) (K F: set) (x _n1 _n2 k: nat):
  $ _n1 = _n2 -> grecaux2 z K F x _n1 k = grecaux2 z K F x _n2 k $;
StepHypRefExpression
1 id
_n1 = _n2 -> _n1 = _n2
2 1 grecaux2eq5d
_n1 = _n2 -> grecaux2 z K F x _n1 k = grecaux2 z K F x _n2 k

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)