Theorem grecaux2eq4 | index | src |

theorem grecaux2eq4 (z: nat) (K F: set) (_x1 _x2 n k: nat):
  $ _x1 = _x2 -> grecaux2 z K F _x1 n k = grecaux2 z K F _x2 n k $;
StepHypRefExpression
1 id
_x1 = _x2 -> _x1 = _x2
2 1 grecaux2eq4d
_x1 = _x2 -> grecaux2 z K F _x1 n k = grecaux2 z K F _x2 n k

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)