Theorem grecaux2eq3 | index | src |

theorem grecaux2eq3 (z: nat) (K _F1 _F2: set) (x n k: nat):
  $ _F1 == _F2 -> grecaux2 z K _F1 x n k = grecaux2 z K _F2 x n k $;
StepHypRefExpression
1 id
_F1 == _F2 -> _F1 == _F2
2 1 grecaux2eq3d
_F1 == _F2 -> grecaux2 z K _F1 x n k = grecaux2 z K _F2 x n k

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)