theorem elsab (B: set) (a b: nat) {x: nat} (A: set x):
$ x = a -> A == B $ >
$ a, b e. S\ x, A <-> b e. B $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a, b e. S\ x, A <-> b e. S[a / x] A) -> (b e. S[a / x] A <-> b e. B) -> (a, b e. S\ x, A <-> b e. B) |
2 |
|
elsabs |
a, b e. S\ x, A <-> b e. S[a / x] A |
3 |
1, 2 |
ax_mp |
(b e. S[a / x] A <-> b e. B) -> (a, b e. S\ x, A <-> b e. B) |
4 |
|
eleq2 |
S[a / x] A == B -> (b e. S[a / x] A <-> b e. B) |
5 |
|
hyp h |
x = a -> A == B |
6 |
5 |
sbse |
S[a / x] A == B |
7 |
4, 6 |
ax_mp |
b e. S[a / x] A <-> b e. B |
8 |
3, 7 |
ax_mp |
a, b e. S\ x, A <-> b e. B |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)