theorem elsab (B: set) (a b: nat) {x: nat} (A: set x):
  $ x = a -> A == B $ >
  $ a, b e. S\ x, A <-> b e. B $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (a, b e. S\ x, A <-> b e. S[a / x] A) -> (b e. S[a / x] A <-> b e. B) -> (a, b e. S\ x, A <-> b e. B) | 
        
          | 2 |  | elsabs | a, b e. S\ x, A <-> b e. S[a / x] A | 
        
          | 3 | 1, 2 | ax_mp | (b e. S[a / x] A <-> b e. B) -> (a, b e. S\ x, A <-> b e. B) | 
        
          | 4 |  | eleq2 | S[a / x] A == B -> (b e. S[a / x] A <-> b e. B) | 
        
          | 5 |  | hyp h | x = a -> A == B | 
        
          | 6 | 5 | sbse | S[a / x] A == B | 
        
          | 7 | 4, 6 | ax_mp | b e. S[a / x] A <-> b e. B | 
        
          | 8 | 3, 7 | ax_mp | a, b e. S\ x, A <-> b e. B | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)