theorem elListHd (A: set) (G: wff) (a b: nat): $ G -> a : b e. List A $ > $ G -> a e. A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elListS | a : b e. List A <-> a e. A /\ b e. List A |
|
2 | hyp h | G -> a : b e. List A |
|
3 | 1, 2 | sylib | G -> a e. A /\ b e. List A |
4 | 3 | anld | G -> a e. A |