theorem elListHd (A: set) (G: wff) (a b: nat): $ G -> a : b e. List A $ > $ G -> a e. A $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elListS | a : b e. List A <-> a e. A /\ b e. List A  | 
        |
| 2 | hyp h | G -> a : b e. List A  | 
        |
| 3 | 1, 2 | sylib | G -> a e. A /\ b e. List A  | 
        
| 4 | 3 | anld | G -> a e. A  |