Theorem
consne0
≪
|
index
|
src
|
≫
theorem consne0 (a b: nat): $ a : b != 0 $;
Step
Hyp
Ref
Expression
1
peano1
suc (a, b) != 0
2
1
conv
cons
a : b != 0
Axiom use
axs_peano
(
peano1
)