theorem b0ltid (n: nat): $ n != 0 <-> n < b0 n $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(0 < n <-> n != 0) -> (0 < n <-> n < b0 n) -> (n != 0 <-> n < b0 n) |
2 |
|
lt01 |
0 < n <-> n != 0 |
3 |
1, 2 |
ax_mp |
(0 < n <-> n < b0 n) -> (n != 0 <-> n < b0 n) |
4 |
|
bitr |
(0 < n <-> n + 0 < n + n) -> (n + 0 < n + n <-> n < b0 n) -> (0 < n <-> n < b0 n) |
5 |
|
ltadd2 |
0 < n <-> n + 0 < n + n |
6 |
4, 5 |
ax_mp |
(n + 0 < n + n <-> n < b0 n) -> (0 < n <-> n < b0 n) |
7 |
|
lteq1 |
n + 0 = n -> (n + 0 < n + n <-> n < n + n) |
8 |
7 |
conv b0 |
n + 0 = n -> (n + 0 < n + n <-> n < b0 n) |
9 |
|
add0 |
n + 0 = n |
10 |
8, 9 |
ax_mp |
n + 0 < n + n <-> n < b0 n |
11 |
6, 10 |
ax_mp |
0 < n <-> n < b0 n |
12 |
3, 11 |
ax_mp |
n != 0 <-> n < b0 n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)