theorem appendSi (a b c x: nat): $ a ++ b = c $ > $ x : a ++ b = x : c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
2 |
x : a ++ b = x : (a ++ b) |
||
5 |
hyp h |
a ++ b = c |
|
6 |
x : (a ++ b) = x : c |
||
7 |
eqtr* |
x : a ++ b = x : c |