theorem appendSi (a b c x: nat): $ a ++ b = c $ > $ x : a ++ b = x : c $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
x : a ++ b = x : (a ++ b) -> x : (a ++ b) = x : c -> x : a ++ b = x : c |
2 |
|
appendS |
x : a ++ b = x : (a ++ b) |
3 |
1, 2 |
ax_mp |
x : (a ++ b) = x : c -> x : a ++ b = x : c |
4 |
|
conseq2 |
a ++ b = c -> x : (a ++ b) = x : c |
5 |
|
hyp h |
a ++ b = c |
6 |
4, 5 |
ax_mp |
x : (a ++ b) = x : c |
7 |
3, 6 |
ax_mp |
x : a ++ b = x : c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)