Theorem SndSum | index | src |

theorem SndSum (A B: set): $ Snd (Sum A B) == B $;
StepHypRefExpression
1 bitr
(a1 e. Snd (Sum A B) <-> b1 a1 e. Sum A B) -> (b1 a1 e. Sum A B <-> a1 e. B) -> (a1 e. Snd (Sum A B) <-> a1 e. B)
2 elSnd
a1 e. Snd (Sum A B) <-> b1 a1 e. Sum A B
3 1, 2 ax_mp
(b1 a1 e. Sum A B <-> a1 e. B) -> (a1 e. Snd (Sum A B) <-> a1 e. B)
4 Sumr
b1 a1 e. Sum A B <-> a1 e. B
5 3, 4 ax_mp
a1 e. Snd (Sum A B) <-> a1 e. B
6 5 ax_gen
A. a1 (a1 e. Snd (Sum A B) <-> a1 e. B)
7 6 conv eqs
Snd (Sum A B) == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)