theorem SndSum (A B: set): $ Snd (Sum A B) == B $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (a1 e. Snd (Sum A B) <-> b1 a1 e. Sum A B) -> (b1 a1 e. Sum A B <-> a1 e. B) -> (a1 e. Snd (Sum A B) <-> a1 e. B) | 
        
          | 2 |  | elSnd | a1 e. Snd (Sum A B) <-> b1 a1 e. Sum A B | 
        
          | 3 | 1, 2 | ax_mp | (b1 a1 e. Sum A B <-> a1 e. B) -> (a1 e. Snd (Sum A B) <-> a1 e. B) | 
        
          | 4 |  | Sumr | b1 a1 e. Sum A B <-> a1 e. B | 
        
          | 5 | 3, 4 | ax_mp | a1 e. Snd (Sum A B) <-> a1 e. B | 
        
          | 6 | 5 | ax_gen | A. a1 (a1 e. Snd (Sum A B) <-> a1 e. B) | 
        
          | 7 | 6 | conv eqs | Snd (Sum A B) == B | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)